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Dichromats recognize colors using two out of three cone cells; L, M, and S. In order to

extend the ability of dichromats to recognize the color difference, the authors propose

a method to expand the color difference when observed by dichromats. Most methods

analyze the color in color space, while their method analyze the color in image space.

Namely, they analyze the color between the neighboring pixels not in intensity space but

in chromaticity space, and form a Poisson equation. Solving the Poission equation results

in an image for dichromats whose relative color difference between neighboring pixels is

as same as the image observed by trichromats.
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I. INTRODUCTION

Red, green, and blue colors are detected by three kinds of cone cells embedded in the retina.

Dichromats use two of them to recognize colors. In this article, we propose a method to enhance

the visibility of dichromats.

Enhancing the visibility of color image for dichromats is an important research field1–21. For

example, Rasche et al.22 transformed the color space with homographic projection so that the color

difference of dichromats becomes similar to that of trichromats. Nakauchi and Onouchi23 applied

a clustering algorithm in color space and they stretched the color difference so that each cluster

becomes far apart. Kuhn et al.24 employed spring-mass model in order to make the color difference

of dichromats to be as same as that of trichromats. Tanaka et al.25 gave a closed-form solution to the

cost function, where the color difference between neighboring pixels becomes similar to a certain

value, which is calculated from the color difference of neighboring pixels under trichromatic view.

Miyazaki et al.26 defined a hue for dichromats and converted the trichromat’s hue to dichromat’s

hue so that the hue difference will be the same among these people.

Our approach is quite different from existing methods. Most methods first map all pixel colors

in color space such as RGB, HSV, XYZ, LMS, L*a*b*, etc., and next, they deform the color space

or deform the clusters of mapped points so that it satisfies the required condition. On the other

hand, our method analyzes the color difference between neighboring pixels. Namely, our method

analyzes not in color space but in image space (i.e., pixel coordinates). Unlike Tanaka et al.25,

which analyzes intensity instead of hue, we analyze hue instead of intensity. We preserve the color

difference recognized by trichromats, and provide the same color difference to dichromats as that

of trichromats. We formulate the Poisson equation so that the relative color difference between

neighboring pixels will be preserved. Some methods27,28 also solve the Poisson equation in order

to enhance the visibility of dichromats. These methods form the Poisson equation in RGB intensity

space, while our method forms in xy-chromaticity space. As a result, our method exaggerates the

color difference between neighboring pixels. Also, dichromats perceive the color difference of our

output image as the same as trichromats do.

Section II explaines the basic theory, and Section III shows our method. In Section IV, we

show some results, and we also discuss the disadvantage of our method. Section VI concludes our

article.
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II. HUE FOR DICHROMATS

The color value which dichromats perceive can be calculated as follows. RGB value is first

converted to CIE-XYZ value, and after that, it is converted to LMS value. The LMS represents the

sensitivity of cone cells. The procedures to calculate the LMS values of dichromats are shown in

some literature, such as Judd29 and Brettel et al.30. In this article, we follow Judd29. The conversion

formula for protanopia is shown below.
Lp

Mp

Sp

 =


0.0 2.02 −2.52

0.0 1.0 0.0

0.0 0.0 1.0




L

M

S

 . (1)

And, the conversion formula for deuteranopia is shown below.
Ld

Md

Sd

 =


1.0 0.0 0.0

0.49 0.0 1.25

0.0 0.0 1.0




L

M

S

 . (2)

In xy-diagram calcualted from CIE-XYZ value, the white color is placed in (x, y) = (0.33, 0.33)

for trichromats. First, we define the hue α of trichromats as an angle defined in xy-plane (Figure

1 (a)). The trichromatic hue α is defined as an angle around the white point (x, y) = (0.33, 0.33).

We define the 0◦ of α to be the direction of −45◦. The hue angle α of a certain color (x, y) is

calculated as follows.

α =
π

4
+ tan−1 y − 0.33

x− 0.33
. (3)

We also define the hue β of dichromats (Fig. 1(b, c)), which has strong relation with the L*a*b*

hue of trichromats26. Our definition of hue is mathematically convincing26. Following Judd29,

the white point of protanopia is (x, y) = (0.747, 0.253) and that of deuteranopia is (x, y) =

(1.000, 0.000). We define the hue β rotating around these white points, where it ranges from 140◦

direction to 200◦ direction for protanopia and ranges from 140◦ direction to 170◦ direction for

deuteranopia. The angles of these ranges are carefully chosen so that the defined hue distributes

inside the color gamut. The hue angle β of protanopia is calculated as follows:

β =
π

180

(
140 +

α

2π
(200− 140)

)
, (4)

and the hue angle β of deuteranopia is calcuted as follows:

β =
π

180

(
140 +

α

2π
(170− 140)

)
. (5)
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FIG. 1. Definition of hue of (a) trichromats, (b) protanopia, and (c) deuteranopia.

Here, the hue angle α ranges from 0 to 2π. The direction of 0◦ in hue angle α is casually defined

(i.e., 45◦); however, it does not matter for our purpose as explained mathematically in Section

III. Section III explains that our method use the relative value for representing the hue instead of

the absolute value. This is because that the hue of trichromats ranges from 0 to 2π, but the 2π is

cyclically connected to 0, because that the hue of dichromats ranges in a limited range.

Most of the color spaces are defined for trichromats. These color spaces such as L*a*b* or

YCbCr assumes that human eye is most sensitive to green channel compared to red and blue

channels. However, deuteranopia lacks the sensitivity to green color and has only the sensitivity

to red and blue color. Namely, the precondition of trichromats’s color space is often invalid when

considering dichromats. Therefore, this article uses the hue defined in this section26.

III. COLOR ENHANCEMENT FOR DICHROMAT

The purpose of the method is to enhance the visibility of the image for dichromats. As shown

in Sec. II, we represent the color as the hue angle shown in Fig. 1.

sRGB value of the input image is converted to CIE-XYZ. After that, CIE-XYZ value is con-
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verted to xy-chromaticity as follows:

x̃ =
X̃

X̃ + Ỹ + Z̃
, (6)

ỹ =
Ỹ

X̃ + Ỹ + Z̃
, (7)

z̃ =
Z̃

X̃ + Ỹ + Z̃
. (8)

The vector from the white point (1/3, 1/3) of xy chromaticity to the chromaticity of image pixel

is represented as Eq. (9).

a(j, i) =


x̃(j, i)− 0.33

ỹ(j, i)− 0.33

0

 . (9)

Here, we use (j, i) for representing the x and y components of pixel position represented in Eu-

clidean coordinates with x and y axes.

We denote the 4-neighbor pixel position as (j +∆j, i +∆i), where the integer values ∆j and

∆i obey |∆j|+ |∆i| = 1. The color vectors of neighboring pixels are also calculated as Eq. (10).

ã(j +∆j, i+∆i) =


x̃(j +∆j, i+∆i)− 0.33

ỹ(j +∆j, i+∆i)− 0.33

0

 . (10)

We normalize these vectors and denote them as â(j, i) and â(j + ∆j, i + ∆i) (Figure 2). We

denote the cross product of these two vectors as a.

a(j +∆j, i+∆i) = â(j +∆j, i+∆i)× â(j, i) . (11)

Calculating the arcsine of a results in the signed angle between â(j +∆j, i+∆i) and â(j, i). We

denote this angle as ∆α(j +∆j, i+∆i) (Figure 3).

∆α(j +∆j, i+∆i) = sin−1(a(j +∆j, i+∆i)) . (12)

The discretized representation of the Laplacian of the hue angle β̃ for dichromats is as follows:

△β̃(j, i) = −
{
β̃(j, i)− 1

4
β̃(j − 1, i)

−1

4
β̃(j + 1, i)− 1

4
β̃(j, i− 1)− 1

4
β̃(j, i+ 1)

}
. (13)
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FIG. 2. Chromaticitiy vector.

FIG. 3. Relative hue angle between two neighboring pixels.

Same goes to α.

△α(j, i) = −
{
α(j, i)− 1

4
α(j − 1, i)

−1

4
α(j + 1, i)− 1

4
α(j, i− 1)− 1

4
α(j, i+ 1)

}
. (14)
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Eq. (14) is also represented as follows:

△α(j, i) = −
{1
4
(α(j, i)− α(j − 1, i))

+
1

4
(α(j, i)− α(j + 1, i))

+
1

4
(α(j, i)− α(j, i− 1))

+
1

4
(α(j, i)− α(j, i+ 1))

}
. (15)

If we simply subtract two angles, the calculation will fail since the angle has a cycle of 360◦. For

example, 5◦ minus 355◦ should be 10◦, not −350◦. If we convert an angle to a vector and calculate

the angle between two vectors, this problem will not occur. Unlike dot product of two vectors,

cross product of two vectors can calculate the angle with signed value. Using Eq. (11), Eq. (15)

can be rewritten as follows:

△α(j, i) = −
{1
4
∆α̃(j − 1, i) +

1

4
∆α̃(j + 1, i)

+
1

4
∆α̃(j, i− 1) +

1

4
∆α̃(j, i+ 1)

}
. (16)

The difference of hue angle β̃ between neighboring pixels should be proportional to the differ-

ence of hue angle α between neighboring pixels. Namely, the Laplacian of β̃ should be the same

as the Laplacian of α (Figure 4), scaled with a certain constant value.

△β̃(j, i) = △α(j, i) . (17)

This type of formula is called Poisson equation. From Eq. (13) and Eq. (16), Eq. (17) is represented

as follows:

β̃(j, i)− 1

4
β̃(j − 1, i)− 1

4
β̃(j + 1, i)

−1

4
β̃(j, i− 1)− 1

4
β̃(j, i+ 1)

=
1

4
∆α̃(j − 1, i) +

1

4
∆α̃(j + 1, i)

+
1

4
∆α̃(j, i− 1) +

1

4
∆α̃(j, i+ 1) . (18)

The angle β̃ between neighboring pixels will become same as the angle α between neighboring

pixels if we solve Eq. (18). Although β̃ becomes similar to α, the calculated β̃ becomes free from

the cycle of 360◦. Unlike an identity equation β̃ = α which copies the absolute angle, Eq. (17)

preserves the relative angle among neighboring pixels.
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FIG. 4. Color difference between neighboring pixels.

FIG. 5. Specific example of absolute and relative hue angles.

Suppose that the image consists of three pixels, and has hue angles α which are 300◦, 350◦, and

40◦ (Fig. 5). The color for trichromats will be blue, purple, and red. If we simply map these angles

to the angle β̃, the color for dichromats becomes faint blue, deep blue, and yellow. However, if we

solve the above mentioned Poisson equation, the calculated angle will be 300◦, 350◦, and 400◦. If

we map these angles to the angle β̃, for example, to 150◦, 160◦, and 170◦, the color for dichromats

becomes faint yellow, faint cyan, and faint blue. The color difference between neighboring pixels

will be preserved if we solve the Poisson equation.

The closed-form solution to β̃ Eq. (18) can be obtained using the LU decomposition imple-

mented in sparse matrix library.

The obtained β̃ is not in the required range, we normalize the standard deviation. We calculate

the standard deviation σ of β̃ and the average µ. As for protanopia, we will adjust the average µ to

be 170◦ and the standard deviation to be 15◦. As shown in Figure 6, we make the range 170◦ ± 2σ

to be equal to the range 140◦ ≤ β ≤ 200◦.
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FIG. 6. Angle adjustment.

The hue angle β̃ for protanopia is modified as follows:

β =
π

180

(
15

β̃ − µ

σ
+ 170

)
. (19)

As for deuteranopia, we use 155◦ for µ and 7.5◦ for σ.

β =
π

180

(
15

2

β̃ − µ

σ
+ 155

)
. (20)

Now, we recover the XYZ value from the calculated hue angle β. For each pixel, we calculate

the chromaticities x, y, and z from the hue angle β. Eq. (21) is used for protanopia and Eq. (22) is

used for deutranopia.

x(j, i) = κp cos(β(j, i)) + 0.747 ,

y(j, i) = κp sin(β(j, i)) + 0.278 ,

z(j, i) = 1.0− x(j, i)− y(j, i) . (21)
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x(j, i) = κb cos(β(j, i)) + 1.000 ,

y(j, i) = κb sin(β(j, i)) + 0.000 ,

z(j, i) = 1.0− x(j, i)− y(j, i) . (22)

Here, κp and κb are constant value set manually so that the calculated value will be inside the color

gamut.

When we convert XYZ brightness of input image to xyz chromaticity, we divide by the sum,

X̃ + Ỹ + Z̃. This value X̃ + Ỹ + Z̃ is again multiplied to xyz chromaticity of output image in

order to convert it to represent the XYZ brightness. The output brightness X(j, i), Y (j, i), and

Z(j, i) of pixel (j, i) is calculated as Eq. (23) from the chromaticity x(j, i), y(j, i), and z(j, i).

X(j, i) = x(j, i)
(
X̃(j, i) + Ỹ (j, i) + Z̃(j, i)

)
,

Y (j, i) = y(j, i)
(
X̃(j, i) + Ỹ (j, i) + Z̃(j, i)

)
,

Z(j, i) = z(j, i)
(
X̃(j, i) + Ỹ (j, i) + Z̃(j, i)

)
. (23)

After that, we convert the XYZ value to the appearance of dichromats. Finally, we convert

CIE-XYZ to sRGB.

IV. EXPERIMENT

A. Quantitative Experiment

In this section, we compare our method with existing methods26,27. The results of the color-

based method26, the gradient-based method27, and the proposed method applied to the input image

shown in Figure 7(a), are shown in Fig. 7(c), Fig. 7(d), and Fig. 7(e), respectively. Here, the

results for deutranopia are shown. The dichromats’ appearance is shown in Fig. 7(b), where all

these three methods (Fig. 7(c), Fig. 7(d), and Fig. 7(e)) distinguished the color difference of red

berry and green leaf.

Now, let us compare the performance of these three method numerically. The input image is

shown in Figure 8(a), while its protanopia appearance is shown in Fig. 8(b). The color distribution

of this image is evenly placed in color space, and thus existing methods which stretches the plotted

pixels in color space do not work. Our result is shown in Fig. 8(e), which show color exaggeration.

Our methods have higher performance than existing methods, which are based on such approaches.
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FIG. 7. Results of natural image: (a) Input image, (b) deutranopia image, (c) result of the color-based

method, (d) result of the gradient-based method, and (e) our result.

One of the results26, which is based on color space, is shown in Fig. 8(c). The result of other

gradient-based method27 is shown in Fig. 8(d). We calculated the color difference between point

A and point B, as shown in Figure 9. Here, we use the chromaticity difference of L*a*b*. The

L*a*b* color space and its color difference
√
(a∗A − a∗B)

2 + (b∗A − b∗B)
2 are invalid for dichromats

because it is designed for trichromats. However, we use it because there is no other choice. The

difference is 15.97 for the existing color-based method26, is 33.33 for the existing gradient-based

method27, and is 110.7 for our method, which shows the advantage of our method.

Another disadvantage of the previous color-based method26 is the color gap indicated by the

thick line in Fig. 9. This is because the method26 use the absolute value of hue angle from 0◦ to

360◦, where the gap will cause between 360◦ and 0◦. On the other hand, we use the relative hue

angle using the Poisson equation, and thus the color gap does not occur between 360◦ and 0◦.

The color around the center of the image varies from yellow to blue in Fig. 8(c) and Fig. 8(d).

Fig. 8(c) and Fig. 8(d) have a single cycle of such color variation, while Fig. 8(e) haves two cycles

of such color variation: the color varies from yellow to blue, blue to yellow, yellow to blue, and

again blue to yellow in Fig. 8(e). This is the limitation of stretching the color space without

nonlinear distortion (Fig. 8(c)). Also, the existing gradient-based method27 only shifts the gradient

of RGB (Fig. 8(d)), which does not consider the cyclic feature of chromaticity. Our method can

be said that it has twice high performance than existing approaches.

B. Qualitative Experiment

Quantitative evaluation in Section IV A has shown that our method outperforms existing meth-

ods. However, one might be anxious about the gradation caused in Fig. 8 (e). In this section, we

show some qualitative evaluation in order to show that this effect is not sensitive in natural images.
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FIG. 8. Result of evenly distributed color: (a) input image, (b) protanopia appearance, (c) existing color-

based method result, (d) existing gradient-based method result, and (e) proposed method result.

FIG. 9. Evaluation of color difference.

Figures 10 and 11 show some results. The color difference of our result resembles the trichromats’

appearance, while the gradation artifacts are unnoticable.

V. DISCUSSION

Although the disadvantage of our method is the gradation effect as described in Sectio IV A,

this disadvantage does not matter in natural image as described in Section IV B.

Another disadvantage of our method is shown in Figure 12. The color difference is not so ex-

aggerated in this result. This is due to the characteristics of the proposed algorithm. Our method

formulates an equation between neighboring pixels, and solves it. Therefore, if the colored region

is separated by achromatic region, we cannot calculate the color difference between colored re-
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FIG. 10. Results of various images: (a) input image, (b) protanopia appearance, and (c) our result.
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FIG. 11. Results of various images: (a) input image, (b) deutranopia appearance, and (c) our result.
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FIG. 12. Failure case: (a) input image, (b) protanopia appearance, and (c) our result.

gions. This problem is inevitable for our approach which analyzes local pixels. On the other hand,

existing methods which analyzes global space of color are not sensitive to this problem. Mixing

local approach and global approach will be our future plan for this work.

VI. CONCLUSION

In this article, we have proposed a method which enhance the visibility of dichromats. Our

method converts the color of an image so that the image will be clear for dichromats. We have

formulated the color difference of trichromat as a Poisson equation, and solved it to preserve the

color difference, which can also be perceived by dichromats. The Poisson equation formulated in

chromaticity space exaggerate the color difference of neighboring pixels, and at the same time, it

preserves the chromaticity difference of trichromats. Experimental results show that our method

is robust and beneficial. The disadvantage of our method is that it cannot be applied to achromatic

images (black, gray, and white). Some kind of preprocessing or postprocessing may avoid such

problems; however, such processings do not fundamentally solve the problem. We are planning to

theoretically solve this problem in the future.
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