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Abstract Photometric stereo allows us to estimate the surface normal of
an object based on its shading. In uncalibrated photometric stereo, the light
source direction is unknown; thus, both the light source direction and surface
normal should be estimated, which establishes an ill-posed problem with am-
biguity in its solution. Consequently, assumptions should be made to uniquely
determine the solution; however, assumptions are not always satisfied in prac-
tice, which results in an estimated surface normal that differs from the true
surface normal. To improve surface normal estimation, we analyze the polar-
ization state of reflected light considering that polarization can constrain the
possible orientation of the surface normal. Thereafter, through extensive ex-
perimental evaluations, we demonstrate that polarization effectively improves
uncalibrated photometric stereo.

Keywords Polarization · Shape-from-X · Surface normal · Photometric
stereo · Uncalibrated photometric stereo

1 Introduction

Uncalibrated photometric stereo in which light source directions are unknown
lacks a unique solution when determining the surface normal of an object. Al-
though assumptions can be made for disambiguation, they may not be satisfied
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in practice. In this study, we analyze the polarization state of reflected light
to improve surface normal estimation accuracy in uncalibrated photometric
stereo.

Shading comprises albedo (i.e., diffuse reflectance), a surface normal, and a
light source direction, which are unknown in uncalibrated photometric stereo.
To uniquely determine the surface normal of an object, we constrain light and
the normal itself. These constraints may not be satisfied in practice; thus, we
also consider the polarization state of reflected light, which depends on the
surface normal, to further refine the estimation.

2 Related work

Photometric stereo [1] with unknown light source direction is referred to as
uncalibrated photometric stereo [2–15].

Hayakawa [3] proved that uncalibrated photometric stereo can be solved
if the light source brightness (i.e., object albedo) is uniform, and this was
confirmed in Corollary 4.1 by Belhumeur et al. [6]. Similarly, we assume the
light source brightness to be uniform. In addition, Hayakawa [3] and Belhumeur
et al. [6] proved that three or more normal values should be known to obtain
the solution. Accordingly, we use the known surface normal of the occluding
boundary.

Wolff and Boult [16] developed a basic theory to demonstrate that shape
from polarization can constrain the surface normal. Then, Rahmann and Can-
terakis [17] applied this constraint to estimate the surface normal of a specu-
lar object from multiple views. Atkinson and Hancock [18] analyzed the local
structure of an object between two viewpoints to calculate the surface normal
from the polarization of two views. In addition, Atkinson and Hancock [19]
thoroughly investigated the surface normal estimation of a diffuse object from
a single view. In addition to the surface normal, Huynh et al. [20] estimated
the refractive index. In these studies, polarization facilitated the estimation of
the surface normal. Similarly, we leverage polarization to constrain the surface
normal to improve the accuracy of uncalibrated photometric stereo.

Atkinson and Hancock [21] used photometric information to uniquely deter-
mine the surface normal because there is ambiguity when uniquely determin-
ing the surface normal via polarization. Using both photometric information
and polarization information is also useful for uncalibrated photometric stereo.
For example, Drbohlav and Sara [22] used polarization for uncalibrated photo-
metric stereo and proved that the polarizer should be set in front of the light
source to uniquely determine the surface normal of the object. In addition,
Ngo et al. [23] obtained the surface normal without restricting the polarizer
position. However, they made assumptions, and the refractive index should be
estimated to calculate the surface normal. In contrast, the proposed method
does not require refractive index estimation. In addition, to the best of our
knowledge, no mathematical proof for the solution has been provided for the
iterative computations in those methods [22,23], whereas the proposed method
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is based on linear algebra, and the unique solution is explained mathematically.
The two similar methods [22,23] indicate that polarization provides a strong
cue for uncalibrated photometric stereo but is imperfect; therefore, the pro-
posed method relies on a robust method commonly employed in uncalibrated
photometric stereo that does not employ polarization. We then employ polar-
ization to further refine the surface normal estimate. The proposed method
for polarization-based uncalibrated photometric stereo uniquely determines
the surface normal with robustness, stability, and reliability. In addition, the
correctness of the proposed method is proven mathematically.

3 Uncalibrated photometric stereo

3.1 Lambert reflection

Consider an object obeying the Lambertian reflection model and a far point
light source. Observed brightness i can be represented as follows:

i = s · l , (1)

or s = (sx, sy, sz)
⊤ is the surface vector and unit vector l = (lx, ly, lz)

⊤ is the
light source vector. Surface vector s is a product of the albedo and normal
vector, and light source vector l represents the light direction.

As s · l may become negative, Eq. (1) is typically formulated as i = max(s ·
l, 0). However, photometric linearization [24–30] forces the images to obey Eq.
(1). Thus, in the proposed method, we apply photometric linearization to the
input images.

The P × 3 surface matrix S is a concatenation of surface vectors and the
3×F light matrix L, which is a concatenation of light vectors, where P is the
number of pixels in an image, and F is the number of images:

S =


s1x s1y s1z
s2x s2y s2z
...

...
...

sPx sPy sPz

 , (2)

L =

 lx1 lx2 . . . lxF
ly1 ly2 . . . lyF
lz1 lz2 . . . lzF

 . (3)

The input data are represented by matrix I:

I = SL =


i11 i12 . . . i1F
i21 i22 . . . i2F
...

...
. . .

...
iP1 iP2 . . . iPF

 . (4)

As the rank of both the surface matrix S and light matrix L is 3, Eq. (4)
implies that the rank of matrix I is also 3.
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3.2 Singular value decomposition

We apply photometric linearization [24–30] to input image i to obtain shading
image î. Here, the pixel brightness of the p-th pixel from image f is denoted
ipf .

Image matrix Î locates the pixels of the shading image vertically and the
images horizontally as follows:

Î =


î11 î12 . . . î1F
î21 î22 . . . î2F
...

...
. . .

...

îP1 îP2 . . . îPF

 . (5)

We apply singular value decomposition (SVD) to the image matrix:

Î = UWV⊤ . (6)

Here, the rank of image matrix Î is 3. By extracting three components from the
P ×F left singular matrix U, F ×F singular value matrix W, and F ×F right
singular matrix V⊤, we obtain matrices U′, W′, and V′⊤ with dimensions
P × 3, 3× 3, and 3× F , respectively. Thus, we obtain:

I′ = U′W′V′⊤ . (7)

Pseudo-surface matrix S′ and pseudo-light matrix L′ are given as follows.

S′ = U′W′ , L′ = V′⊤ . (8)

However,these matrices are not the true surface and light matrices. In fact,
the ambiguity between S′ and L′ represented by matrix A should be solved to
uniquely determine true surface matrix S and true light matrix L. Ambiguity
matrix A is a 3× 3 regular matrix satisfies [2–4,6]:

S = S′A−1 , L = AL′ . (9)

3.3 Constant brightness constraint

We use the same light source to capture input images; therefore, we can solve
ambiguity matrix A by constraining the light source brightness to be constant
[3].

True light vector lf can be obtained by multiplying pseudo-light vector l′f
by ambiguity matrix Ã:

lf = Ãl′f . (10)



Uncalibrated photometric stereo refined by polarization angle 5

The norm of the light vector represents the squared brightness, i.e., l⊤f lf or

l′⊤f Ã⊤Ãl′f . We define symmetrical matrix B as follows:

B = Ã⊤Ã =

 b1 b4 b6
b4 b2 b5
b6 b5 b3

 . (11)

The constraint that forces the squared brightness to be one is expressed as
follows:

l′⊤f Bl′f = 1 . (12)

Equation (12) can be rewritten as follows:(
l′2xf l′2yf l′2zf 2l′xf l

′
yf 2l′yf l

′
zf 2l′zf l

′
xf

)
·(

b1 b2 b3 b4 b5 b6
)⊤

= 1 . (13)

We concatenate Eq. (13) for F images to obtain the following expressions:

Cb = 1 , (14)

C =


l′2x1 l′2y1 . . . 2l′z1l

′
x1

l′2x2 l′2y2 . . . 2l′z2l
′
x2

...
...

. . .
...

l′2xF l′2yF . . . 2l′zF l
′
xF

 ,

b =
(
b1 b2 . . . b6

)⊤
,

1 =
(
1 1 . . . 1

)⊤
,

whose solution provides b:
b = C+1 . (15)

Symmetrical matrix B can be rearranged by Eq. (11) from b. As B is sym-
metrical, its SVD is given as follows:

B = UBWBU
⊤
B . (16)

Hence, ambiguity matrix Ã can be calculated from B as follows:

Ã = W
1/2
B U⊤

B . (17)

We update pseudo-surface matrix S′ and pseudo-light matrix L′ using the
obtained ambiguity matrix Ã as follows:

S′′ = S′Ã−1 , L′′ = ÃL′ . (18)

Finally, we represent the remaining ambiguity as orthogonal matrix R satis-
fying:

S = S′′R , L = R⊤L′′ , (19)

which is solved in Sect. 4.2.
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Fig. 1 Occluding boundary in a captured image

Fig. 2 Computation of occluding boundary: a average image, b object (white) and back-
ground (black) regions, and c occluding boundary

4 Occluding boundary

4.1 Surface normal at occluding boundary

The occluding boundary of an object contour is that observed in a captured
image, as shown in Fig. 1.

We should detect the boundary of the object from the image. Here, we
calculate the average image (Fig. 2a) from multiple input images. Thresholding
the brightness of the average image provides the object region, which is shown
in white in Fig. 2b, where the black region represents the background. The
boundary between the white and black regions is the occluding boundary
(Fig. 2c).

After detecting the occluding boundary, we calculate its surface normal
under the assumption that the object is geometrically smooth and closed. We
consider the direction from the object to the camera to be the z-axis. Differ-
ential geometry proves that the surface normal to the occluding boundary is
parallel to the xy plane and points outward from the object to the background
region.
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Fig. 3 Occluding boundary constraint

4.2 Occluding boundary constraint

As mentioned in Sect. 3.3, we constrain the length of l and obtain pseudo-
surface matrix S′′. However, an ambiguity preserving the length but deforming
the other components remains. As a result, the pseudo-surface normal calcu-
lated from the SVD is distorted (Fig. 3). Here, we use the surface normal at
the occluding boundary (Sect. 4.1) to estimate ambiguity matrix A [30].

The updated ambiguity matrix A′ is obtained by solving the following
equation:

S′′′ = S′′A′ . (20)

The pixels at the occluding boundary (Sec. 4.1) are used for S′′′. For oc-
cluding boundary matrix S′′′ and pseudo-surface matrix S′′, we concatenate P̃
pixels from the occluding boundary pixels. Theoretically, the surface normal
(n′

x, n
′
y, n

′
z) at the occluding boundary obeys n′

z = 0 because it belongs to the
xy plane; thus, the rank of the matrix is 2 rather than 3 if we concatenate these
vectors. Therefore, we embed n′

z = cz, where cz is a small positive constant,
to increase the rank to 3, and the row of the occluding boundary matrix is
represented as (s′′′x , s′′′y , s′′′z ) = (n′

x, n
′
y, cz).

s′′′x1 s′′′y1 s′′′z1
s′′′x2 s′′′y2 s′′′z2
...

...
...

s′′′
xP̃

s′′′
yP̃

s′′′
zP̃

 =


s′′x1 s′′y1 s′′z1
s′′x2 s′′y2 s′′z2
...

...
...

s′′
xP̃

s′′
yP̃

s′′
zP̃


a′00 a′01 a′02

a′10 a′11 a′12
a′20 a′21 a′22

 . (21)

By multiplying pseudo-inverse S′′+ from the left to Eq. (21), we obtain:

A′ = S′′+S′′′ . (22)

Thus, ambiguity matrix A′ is obtained; however, matrix A′ does not strictly
satisfy orthogonality due to errors. To make ambiguity matrix A′ orthogonal,
we use its SVD:

A′ = URWRV
⊤
R . (23)
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If we force matrixWR to be the identity matrix, the ambiguity matrix becomes
an orthogonal matrix R:

R = URV
⊤
R , (24)

which can improve the pseudo-surface matrix S′′. Finally, the updated surface
matrix, S, is obtained as follows:

S = S′′R . (25)

5 Shape from polarization

5.1 Polarization

The proposed uncalibrated photometric stereo based on existing approaches
(Sects. 3 and 4) uniquely and robustly determines the surface normal of an
object using a mathematical derivation. However, these constraints may not
always work; thus, we refine the surface normal using polarization information.

Light is an electromagnetic wave, and when light oscillates in one direction,
it is said to be a perfect linear polarization. In contrast, unpolarized light
oscillates in all directions. Here, we use unpolarized light to illuminate the
object and observe the diffusely reflected light passing through a polarizer.
The maximum and minimum light brightness values observed while rotating
the polarizer are denoted Imax and Imin, respectively. Then, the surface normal
is represented in polar coordinates with the azimuth and zenith angles denoted
ϕ and θ, respectively. The orientation from the surface point to the camera
corresponds to the z-axis, and the plane containing the reflected light and
surface normal vectors is referred to as the reflection plane. The orientation
of the reflection plane is the same as azimuth angle ϕ or ϕ + 180◦, which is
defined in the image coordinates.

If the polarizer angle coincides with the reflection plane, the minimum
brightness value Imin is observed in specular reflection, and the maximum
brightness value Imax is observed in diffuse reflection. Here, we assume that
the image pixels are diffuse-dominant, i.e., all pixels cause diffuse reflection.
Therefore, the polarizer angle at brightness value Imax coincides with ϕ and
ϕ+180◦. Note that the azimuth angle calculated from polarization has an 180◦

ambiguity because the cycle of the linear polarizer is 180◦, and the azimuth
angle of the surface normal is either ϕ or ϕ+ 180◦.

Figure 4 illustrates the polarization constraint. In the camera coordinate
system, the z-axis is along the optical axis. The reflection plane angle ϕ is the
angle between the x-axis of the camera coordinate system and the intersect-
ing line between the reflection and xy planes. As shown in Fig. 4, the surface
normal is included in the reflection plane; therefore, despite the abovemen-
tioned ambiguity, the azimuth angle obtained from polarization analysis can
constrain the surface normal.
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Fig. 4 Relationship between surface normal and reflection plane when observed from a
single viewpoint

5.2 Azimuth angle calculation

A polarization camera can be used to measure the azimuth angle. Here, we
use multiple input polarization images captured under different light directions
and aggregate the azimuth images into a single image.

As the average angle cannot be calculated directly due to periodicity (i.e.,
0 and 360◦ correspond to the same point), we represent each angle as a vector
and calculate the average across vectors. Then, the angle is retrieved from the
average vector as follows:

ϕx = cos(2ν), ϕy = sin(2ν) . (26)

As the range of the polarizer angle is 0 ≤ ν < π; thus, we double the
angle to map the range onto 0 ≤ ν < 2π. The average values of ϕx and ϕy

are denoted ϕ̄x and ϕ̄y, respectively, and F is number of images. For example,
averaging 1 and 2π−1 will be π, but averaging 1 (rad) and 2π−1 (rad) should
be 0 (rad). To solve this problem, it is necessary to consider the angle in vector
space. In other words, the average of (cos 1, sin 1) and (cos(2π−1), sin(2π−1))
is (1, 0). The average vectors are calculated as follows:

ϕ̄x =

∑F
i=1 ϕxi

F
, ϕ̄y =

∑F
i=1 ϕyi

F
. (27)

Azimuth angle ϕ can be calculated from ϕ̄x and ϕ̄y as follows:

ϕ =
1

2
arctan

(
ϕ̄y

ϕ̄x

)
. (28)

Since we double ν, we divide the arctangent with 2, as shown in Eq. (28). As a
result, azimuth angle ϕ is obtained in the range from 0 (rad) to π (rad). This
angle, ranges from 0 (rad) to π (rad), is not unique in the range 0 (rad) to 2π
(rad); however, this ambiguity is solved using the surface normal obtained in
Sect. 4.2.

The azimuth angle calculation is illustrated in Fig. 5.
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Fig. 5 Example of azimuth angle calculation

Fig. 6 Refinement of surface normal: a polarization constraints and b preservation of z-axis
component

5.3 Polarization-based refinement

Although the surface normal described by Eq. (25) is adequate in most cases,
it can be improved using the azimuth angle derived in Sect. 5.2 (Fig. 6a).

Vector m = (cosϕ, sinϕ, 0) in Fig. 6a represents the azimuth angle ϕ de-
scribed by Eq. (28). Here, the surface normal s (Sect. 4.2) is normalized as ŝ.
Then, surface normal ŝ can be corrected for its orientation to coincide with
that of m as follows:

nxy = (ŝ ·m)m . (29)

Equation (29) only considers the x- and y-axis components; thus, we calcu-
late the z-axis component, as shown in Fig. 6b. The following equation forces
surface normal s to have the same direction as the z axis, i.e., z = (0, 0, 1), to
obtain the z-axis component of the vector as follows:

nz = (ŝ · z)z . (30)
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By adding Eq. (29) and Eq. (30), we obtain the following 3D surface normal
vector:

ñ = nxy + nz . (31)

We normalize ñ to obtain vector n̂. Although the azimuth angle is calcu-
lated using Eq. (28), if the surface normal points to the camera direction, i.e.,
(0, 0, 1), the angle becomes unreliable. Mathematically, the azimuth angle is
undetermined if the zenith angle is 0. Therefore, we weight this constraint (Eq.
(31)) according to whether the surface normal points to the camera. Specifi-
cally, we apply a high weight if the surface normal points perpendicularly to
the camera and a low weight if the surface normal points to the camera.

n = (ŝ · z)ŝ+ {1− (ŝ · z)}n̂ . (32)

The final result is the normal vector calculated by normalizing n in Eq. (32).

5.4 Algorithm

The constraints used in the proposed method are convincing. The constant
brightness constraint (Sect. 3.3) and occluding boundary constraint (Sect.
4.2) are proved to be mathematically convincing to solve the ambiguity of
surface normal. The most important point of this method is the constraint us-
ing polarization (Sect. 5.3). In addition, the balance between the photometric
and polarimetric constraints is important. The proposed method adequately
weights each constraint. For 0◦, there is no shadow; thus, we apply a heavier
weight to the photometric constraint. In contrast, for 90◦, the degree of polar-
ization is the maximum; thus, we apply a heavier weight to the polarization
constraint.

Some existing techniques use the zenith angle of the surface normal as a
cue [18–21] because it can be calculated from the degree of polarization. The
correspondence between the degree of polarization and zenith angle is one-to-
one for diffuse reflection. However, the degree of polarization depends on the
index of refraction (IOR) (Fig. 7a) and the surface roughness [31] (Fig. 7b).
The unknown parameters (i.e., the IOR and surface roughness) would increase;
thus, we did not constrain the zenith angle with the degree of polarization.

However, we agree that constraining the zenith angle using the degree of
polarization is useful; therefore, constraining the zenith angle using the degree
of polarization may improve the proposed method.

6 Experimental results

6.1 Experimental equipment

The experimental environment used to capture images in this study is shown
in Fig. 8a. We fixed the camera and target object, and we captured images
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Fig. 7 Degree of polarization: a surface roughness is zero, and the index of refraction (IOR)
is 1.4, 1.5, . . . , 1.8, and b IOR is 1.7, and the surface roughness is 0, 0.1, . . . , 0.4

Fig. 8 Experimental setup: a environment for capturing images and b camera used in this
study
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Table 1 Camera specifications

Manufacturer FluxData, Inc.

Model FD1665P
Sensor Sony ICX414 x3 1/2CCD (charge-coupled device) color
Resolution 659× 494
Pixel size 9.9µm× 9.9µm
Configuration Polarization 3 channel (0, 45, and 90◦)
Frame rate 74fps (output tone depends on pixel format)
Output interface 1394/b
Software Capture software and development toolkit
Lens Nikon 24mm f/2.8
Internal camera Scout OEM (original equipment manufacturer)

on-board camera ×3 (BASLER AG)

Table 2 Surface normal error of virtual sphere as corresponding constraint is added to
estimation

SVD Constant Occluding Polarization
brightness boundary

Average error (rad) 1.555 2.764 0.000 0.000
Minimum error (rad) 0.938 2.696 0.000 0.000
Maximum error (rad) 2.956 3.079 0.000 0.000

under different light directions. In addition, the white reflectance standard was
used to calibrate the polarization camera.

A photograph of the polarization camera is shown in Fig. 8b, and its spec-
ifications are listed in Table 1.

6.2 Virtual sphere

First, we conducted a simulation using 30 input polarization images of a vir-
tual sphere. Figures 9a–d show the target object, its occluding boundary, its
azimuth angle, and the surface normal, respectively. The azimuth angle with
180◦ ambiguity shown in Fig. 9c is color coded, where the hue represents the
orientation. The surface normal shown in Fig. 9d is color coded such that red,
green, and blue represent the x-, y-, and z-axis components, respectively.

Then, we evaluated the effectiveness of each constraint by determining the
accuracy improvement of the surface normal when adding each constraint.
Figure 10a–d show the surface normal results obtained from the SVD (Sect.
3.2), from the constant brightness constraint (Sect. 3.3), from the occluding
boundary constraint (Sect. 4.2), and from the polarization angle refinement
(Sect. 5.3), respectively. The reconstructed shape of Fig. 9d is shown in Fig.
11. Figure 12 and Table 2 show the error of the obtained surface normal
compared to the true surface normal according to the constraints considered
for estimation.
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Fig. 9 Virtual sphere: a target object, b occluding boundary, c color-coded azimuth angle,
and d color-coded surface normal

Fig. 10 Color-coded surface normal as the corresponding constraint is added to estimation

6.3 Result sphere

We captured 32 images of the real sphere shown in Fig. 13a to calculate its
occluding boundary (Fig. 13b), azimuth angle (Fig. 13c), and surface normal
(Fig. 13d).

Figure 14 and Table 3 show the error of the virtual and real spheres.

The surface normal results obtained when more constraints were integrated
into the estimation are shown in Fig. 15, where the ground truth corresponds
to the estimation result of calibrated photometric stereo with known light
source directions. The reconstructed shape of the ground truth and that ob-
tained using the proposed method are shown in Fig. 16a, b, respectively. The
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Fig. 11 Reconstructed shape of virtual sphere obtained from proposed method

Fig. 12 Surface normal error of virtual sphere as corresponding constraint is added to
estimation

Table 3 Surface normal error of virtual and real spheres

Virtual Real

Average error (rad) 0.000 0.092
Minimum error (rad) 0.000 0.000
Maximum error (rad) 0.000 0.568

Table 4 Surface normal error of real sphere as corresponding constraint is added to esti-
mation

SVD Constant Occluding Polarization
brightness boundary

Average error (rad) 1.625 0.310 0.090 0.092
Minimum error (rad) 0.008 0.001 0.001 0.000
Maximum error (rad) 2.462 0.776 0.435 0.568

error between the proposed method and the theoretical value according to the
constraints considered for estimation is detailed in Fig. 17 and Table 4. As dis-
cussed in the next section, the theoretical value represents the mathematical
expression of the sphere.



16 Daisuke Miyazaki, Shuhei Hashimoto

Fig. 13 Real sphere: a target object, b occluding boundary, c color-coded azimuth angle,
and d color-coded surface normal

Fig. 14 Error of surface normal evaluation from virtual and real spheres

Fig. 15 Color-coded surface normal as corresponding constraint is added to estimation
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Fig. 16 Reconstructed shape of real sphere: a ground truth and b proposed method

Fig. 17 Surface normal error of real sphere as corresponding constraint is added to esti-
mation

6.4 Comparison of ground truth and theoretical value

Mathematically, the true surface normal can be obtained for a spherical shape;
thus, using a sphere for evaluation is valid. However, the mathematically
true surface normal is unknown for arbitrary objects; thus, the corresponding
ground truths are required for evaluation. Here, we used the surface normal
results obtained from calibrated photometric stereo with known light direc-
tions as ground truths. We evaluated a sphere to determine the suitability of
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Fig. 18 Difference between surface normal results obtained from theoretical calculation,
calibrated photometric stereo (ground truth), and proposed uncalibrated photometric stereo
method

Table 5 Difference between results from theoretical calculation, calibrated photometric
stereo (ground truth), and proposed uncalibrated photometric stereo method for plots shown
in Fig. 18

(a) (b) (c)

Average error (rad) 0.092 0.142 0.128
Minimum error (rad) 0.000 0.000 0.001
Maximum error (rad) 0.568 0.807 0.548

the surface normal obtained from calibrated photometric stereo as a ground
truth, and the results are shown in Fig. 18 and Table 5.

The results confirm that calibrated photometric stereo can be used as
ground truth; however, it does not provide the same results as the theoretical
calculation. Therefore, evaluation using calibrated photometric stereo may not
reflect the true value in some cases.

6.5 Common real objects

Figure 19a, b show a common object and its azimuth angle, respectively, and
the surface normal results obtained from 29 input images are shown in Fig. 20.
The ground truth obtained from the calibrated photometric stereo is shown in
Fig. 21a, and the reconstruction obtained using the proposed method is shown
in Fig. 21b. Figure 22 and Table 6 show the error of the obtained surface
normal compared to the ground truth (obtained by calibrated photometric
stereo) according to the constraints considered for estimation. The black part
of the cat object is erroneous because we could not obtain information about
the shape from either shading or polarization. In other words, it is impossible
to obtain the shape of a black object by analyzing the diffuse reflection because
no light is observed at the diffuse reflection of black objects.

Figures 23a, b show another object and its azimuth angle, respectively. In
addition, the surface normal obtained from 32 input images according to the
constraints considered for estimation is shown in Fig. 24. The ground truth
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Fig. 19 Target object 1: a target object and b color-coded azimuth angle

Fig. 20 Color-coded surface normal as corresponding constraint is added to estimation of
object 1

Table 6 Surface normal error of object 1 as corresponding constraint is added in estimation

SVD Constant Occluding Polarization
brightness boundary

Average error (rad) 1.545 1.435 0.633 0.564
Minimum error (rad) 0.038 0.017 0.022 0.013
Maximum error (rad) 2.551 2.375 0.951 2.293

obtained from calibrated photometric stereo is shown in Fig. 25a, and the
shape reconstructed by the proposed method is shown in Fig. 25b. Figure 26
and Table 7 show the error of the obtained surface normal according to the
constraints considered for estimation.

Figure 27a, b show a third object and its azimuth, respectively. The surface
normal obtained from 30 input images according to the constraints considered
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Fig. 21 Reconstructed shape of object 1: a ground truth and b proposed method

Fig. 22 Performance comparison for each constraint
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Fig. 23 Target object 2: a target object and b color-coded azimuth angle

Fig. 24 Color-coded surface normal as corresponding constraint is added to estimation of
object 2

Fig. 25 Reconstructed shape of object 2: a ground truth and b proposed method
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Fig. 26 Surface normal of object 2 as corresponding constraint is added to estimation

Table 7 Surface normal error of object 2 as corresponding constraint is added to estimation

SVD Constant Occluding Polarization
brightness boundary

Average error (rad) 1.629 1.103 0.445 0.359
Minimum error (rad) 0.682 0.198 0.005 0.002
Maximum error (rad) 3.126 2.680 0.811 1.413

Fig. 27 Target object 3: a target object and b color-coded azimuth angle

Table 8 Surface normal error of object 3 as corresponding constraint is added to estimation

SVD Constant Occluding Polarization
brightness boundary

Average error (rad) 1.317 1.023 0.955 0.862
Minimum error (rad) 0.005 0.014 0.299 0.028
Maximum error (rad) 2.467 2.054 1.485 3.028

for estimation is shown in Fig. 28. The ground truth obtained from calibrated
photometric stereo is shown in Fig. 29a, and the reconstructed shape obtained
using the proposed method is shown in Fig. 29b. Figure 30 and Table 8 show
the error of the obtained surface normal according to the constraints considered
for estimation. As can be seen, the neck and breast of the rabbit are not well
reconstructed due to interreflection. Handling interreflection is quite difficult
because polarization is depolarized during interreflection.
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Fig. 28 Color-coded surface normal as corresponding constraint is added to estimation of
object 3

Fig. 29 Reconstructed shape of object 3: a ground truth and b proposed method

Fig. 30 Surface normal error of object 3 as corresponding constraint is added to estimation
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Fig. 31 True azimuth angle (left) and azimuth angle (right) obtained from a sphere under
pollution by faint surrounding light

7 Discussion

The results demonstrate the effectiveness of the constraints used in the pro-
posed method. The occluding boundary provides a strong cue for uncalibrated
photometric stereo. In addition, the calculation of the surface normal is not
affected by the albedo difference, and the surface normal at a pixel with spec-
ular reflection is also obtained correctly, which indicates the contribution of
linearization in photometric stereo.-

However, some limitations of the proposed method should be addressed.
The proposed method, like other photometric stereo methods, cannot be ap-
plied to black objects. In addition, the accuracy of the obtained azimuth angle
may be low because polarization can be easily polluted by even faint sur-
rounding light, as shown in Fig. 31. As can be seen in Fig. 7, the degree of
polarization is low for diffuse reflection and thus sensitive to noise. Finally, the
azimuth angle can only constrain the x- and y-axis components of the surface
normal, whereas the z-axis component is not improved by polarization.

A potential solution to these limitations may be to use the degree of polar-
ization of specular reflection. Even if the diffuse reflection is black, a smooth
object causes specular reflection. As the degree of polarization of specular re-
flection is higher than that of diffuse reflection, the azimuth angle is more
reliable. In addition, the degree of polarization gives a cue for the z-axis com-
ponent of the surface normal. In addition, there is a problem relative to the
degree of polarization, i.e., the surface roughness parameter and IOR should
be known (Fig. 7). Moreover, this solution does not work for objects without
specular reflection. Thus, future plans to improve the proposed method should
be considered carefully.

8 Conclusion

In this paper, we have verified that polarization provides a strong cue to en-
hance uncalibrated photometric stereo. In the proposed method, we use multi-
ple polarization images with illumination from by faint surrounding light dif-
ferent directions from a single light source as input data. Then, photometric
linearization is employed to remove specular reflection. We solve the ambiguity
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of uncalibrated photometric stereo by assuming the light brightness to be con-
stant and that the surface normal at the occluding boundary points is directed
orthogonally outward. The azimuth angle calculated from the polarization data
refines the surface normal calculated using uncalibrated photometric stereo.
The experimental results demonstrated the high performance of the proposed
method when estimating the surface normal of an object.

In future, we plan to prepare an experimental environment to obtain po-
larization data accurately. We also plan to implement a constraint to improve
the estimation of the z-axis component of the surface normal. Although the
polarization degree contains such information, it depends on the refractive in-
dex and roughness of surface. Thus, we also plan to explore other information
sources besides the polarization degree to obtain the z-axis component of the
surface normal.
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