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Abstract

Much research is in progress on the acquisition of
high-density three-dimensional shapes by acquiring and
combining shape data and normal data. The method
proposed in this paper estimates normals to object sur-
faces by employing the photometric stereo method and
combines the estimation with the three-dimensional
shape acquired by a laser range sensor. Although the
photometric stereo method presumes that light-source
directions for each image are known, the proposed
method uses its light-source direction estimates. By
linearizing the images as preprocessing, specular reflec-
tion and shadow effects within the image are removed
and the precision for the light-source direction estima-
tions is increased. Since the proposed method does not
require the light-source directions to be known, it offers
the advantage of broad applicability for measurement
work.

1 Introduction

Three-dimensional (3D) modeling technologies of
physical objects constitute vital technologies that are
employed for a number of purposes, including digital
archiving and works of fine art, and constructing real-
istic virtual spaces. One method to create 3D models
is to use a dedicated measuring device such as a laser
range sensor. This method, however, cannot deter-
mine the surface shaping of the object for a detailed
mesostructure. Consequently, research is in progress
to create high-density 3D models by estimating and
combining shape data and normal data.

The photometric stereo method estimates normals
from the change in brightness across multiple images
obtained by varying the light-source direction [1]. Use
of the photometric stereo method, however, is re-
stricted to a known light-source direction and perfectly
diffuse reflection of the object’s surfaces. Furthermore,
reconstruction of the 3D shape proceeds by integral
calculus of estimated normals. Adjacent pixels accu-
mulate errors that become quite large overall.

Our research attempts to estimate normals of high
density in an environment where the light-source di-
rection is unknown. The method employed uses the
3D shape obtained by a laser range sensor and mul-
tiple images obtained by altering the light-source di-
rection. First, image linearization is conducted as pre-
processing. Image linearization means to remove spec-
ular reflection and shadow effects and to convert an im-
age of solely diffuse reflection components. This work
was necessary, because the photometric stereo method
assumes that no specular reflection or shadow exists.

By using the 3D shape obtained from the laser range
sensor and multiple images, the light-source directions
were estimated. The photometric stereo method was
applied with the estimated light-source directions, and
normals were estimated. Mapping these normals to
the 3D shape obtained with the laser range sensor en-
abled the acquisition of a high-density 3D shape more
detailed than that by using just the laser range sen-
sor. Our method achieved the acquisition of a high-
density 3D shape by mutually compensating between
the drawbacks of the laser range sensor and those of
the photometric stereo method. At the end of this
paper, we show a shape estimation result with repro-
ducing small-scale details, which will be useful in many
application fields.

2 Related Work

As described above, research concerning the creation
of high-density 3D models by estimating shape data
and normal data and combining them is progressing.
Nehab et al. [2] proposed a method of acquiring high-
precision shape data by combining the 3D shape ac-
quired by a laser range sensor and normals estimated
by the photometric stereo method. Later their method
is improved by Okatani et al. [3] which produces more
precise shape. Ochiai et al. [4] mapped the surface nor-
mal obtained by photometric stereo onto the 3D shape
obtained by laser range sensor. Inspired by above re-
search, we also combine the surface normal obtained
by photometric stereo and the 3D geometry obtained
by laser range sensor.

For preprocessing, image linearization is useful for
applying photometric stereo. Mori et al. [5] employed
an image linearization method in which photomet-
ric phenomena were classified in principal component
analysis. Mukaigawa et al. [6] proposed a RANSAC-
based method for image linearization, while Miyazaki
and Ikeuchi [7] iteratively computed the singular value
decomposition in order to linearize the image. We
use Mori’s method [5] for image linearization. Unlike
their method, we also consider the penumbra in our
linearization method.

Light-source direction can be estimated using the
shape obtained by laser range sensor or other sen-
sors. Tachikawa et al. [8] proposed light-source direc-
tion estimation from two images under different light-
ing conditions of a known object. Unten and Ikeuchi
[9] estimated the light-source direction by representing
a set of light sources surrounding the object spheri-
cally. Du et al. [10] estimated the light-source direc-
tion which is represented by spherical harmonics. We
use Tachikawa’s method [8] for light-source direction



estimation. Unlike their method, we use RANSAC ap-
proach for robustly estimate the light source direction.
They applied their method to two input images, while
we apply our method to more than two input images.

3 Image Linearization According to Photo-
metric Phenomena Classification

The process of removing specular reflection and
shadows and converting the image to one of solely
diffuse reflection is called image linearization. This
section describes the method of conducting image lin-
earization according to classification of photometric
phenomena.

3.1 Image Linearization

According to Shashua [11], by assuming a parallel
light source and a perfectly diffuse reflective surface,
a linear combination of three basis images of differing
light-source directions can express an image of arbi-
trary light-source direction. When the three basis im-
ages are Î1, Î2, and Î3 (the orthonormal basis), the
image IL

k of the arbitrary light-source direction can be
expressed by the following linear combination.

AL = ÂC, (1)

AL = (IL
1 , IL

2 , · · · , IL
m),

Â = (Î1, Î2, Î3),
C = (C1, C2, · · · , Cm),

Ck = (αk, βk, γk)�.

The actual image contains shadows and specular re-
flection, and therefore does not satisfy Equation (1).
Linearization coverts an image to one with solely dif-
fuse reflection to satisfy Equation (1).

3.2 Classification of Photometric Phenomena

Comparison of input images and their linearized im-
ages enables classification of pixels into five types: dif-
fuse reflection, specular reflection, attached shadow,
cast shadow, and penumbra. These classifications are
based on the following properties of photometric phe-
nomena. As shown in Figure 1, photometric phenom-
ena is classified by establishing threshold values Tsp1,
Tsp2, Tp1, and Tp2. See Mori et al. [5] for more de-
tails, though we introduce penumbra class which is not
introduced in their method.

3.3 Linearization Steps

The following describes the image linearization pro-
cedures.

(a) Acquisition of input image sequence
Positions of the camera and object of interest
are fixed. Multiple images photographed under
varied light-source direction are inputs. The
light-source direction, 3D shape, and reflectance
of the scene of interest may be unknown.

(b) Computation of basis image Basis image se-
quence matrix Â and coefficient set C are com-
puted by principal component analysis from the
input image sequence matrix AL.

Figure 1. Classification criteria of photometric
phenomena

(c) Computation of linearized images The input
image sequence is linearized by calculating the dot
product of the basis image sequence matrix Â and
coefficient set C.

(d) Classification of photometric phenomena
Pixel values ik,p of the input images and pixel
values iLk,p of the linearized images are compared,
and the photometric phenomena at each pixel are
classified (see Section 3.2).

(e) Denoising by embedding Pixel values of lin-
earized images are embedded to pixels of input
images classified as specular reflection, attached
shadow, cast shadow, and penumbra.

(f) Making threshold values more rigorous
Steps (b) to (e) of the procedure are iterated by
using the input image sequence updated with the
embedded pixel values. In the iteration process,
threshold values Tsp1, Tsp2, Tp1, and Tp2 are
made slightly smaller.

(g) Output of linearized images When the
iteration-terminating condition established in
step (f) is satisfied, linearized images AL are
output.

4 Estimation of Light-Source Direction by
Observing Object of Known Shape

This section describes the method for estimating the
light-source direction. The method in this section uses
two images as inputs. When estimating light-source
directions for each image, an image pair with a large
overlap in the brightest portions for each image was
selected, and light-source directions were estimated to-
gether for the pair images.



4.1 Acquistion of Light-Source Direction

The normal vector Np of point P , the light source
vectors L1 and L2 when photographing image 1 and
image 2, respectively, and the radiance I1p and I2p

when photographing image 1 and image 2, respectively,
are related with the following equation (Tachikawa et
al. [8]).

ML′ = 0 (2)

M = (m1, m2, · · · , mq)�,

L′ = (L1x, L1y, L1z, L2x, L2y, L2z)�,

mp = (I2pNpx, I2pNpy, I2pNpz,

−I1pNpx, −I1pNpy, −I1pNpz)�,

L1 = (L1x, L1y, L1z)�,

L2 = (L2x, L2y, L2z)�,

Np = (Npx, Npy, Npz)�.

Since the rank for matrix M is 5, L′ can be derived
as the sixth right-singular vector upon singular value
decomposition of matrix M .

4.2 Robust Framework for Estimating Light-
Source Direction

Under the premise that the laser range sensor could
not measure the detailed mesostructure of the object
surface, robust estimation was considered effective for
removing errors emerging in portions that could not be
measured. This research employed RANSAC to con-
duct robust estimation according to the following pro-
cedure:

(1) From all points m1,· · ·,mq, R points are randomly
selected.

(2) Matrix M is created from the R points selected,
and L′ is determined according to the method in
Section 4.1.

(3) For all points m1,· · ·,mq, the derived L′ compo-
nent is used to determine the left-hand side m�

p L′

of Equation (2), using ‖m�
p L′ − 0‖ as an error

metric.

(4) The number of points whose errors are within
threshold value T is counted.

(5) The trial of Steps (1) to (4) is iterated, and L′
with the largest number of points whose errors are
within the threshold value is set as the provisional
parameter.

The provisional parameter L′ determined according
to the above procedure was used to determine the er-
ror metric ‖m�

p L′ − 0‖ again. Only the points whose
errors were within the threshold value were selected
to create matrix M , and L′ was again determined by
the method in Section 4.1. The newly derived L′ was
adopted as the final estimated light-source vector.

Figure 2. One of the images: (a) Input image.
(b) An image linearized by our method, where
red pixels represent the negative intensity.

Figure 3. Estimated values: (a) Estimated light-
source direction. (b) Estimated normals.

5 Experiment

This section describes the experimental results of
data acquired from shape measurements and image
photography of actual objects. The Konica-Minolta
VIVID910 was employed for shape measurements, and
the Apogee Alta U16000C for image photography. The
data used for input are shown in Figure 2 (a). The
number of images used was 24. Linearized image is
shown in Figure 2 (b).

The results of estimating the light source direction
are shown in Figure 3 (a). To evaluate the estimation
error, true light source direction are obtained from a
metal sphere. In Figure 3 (a), the light-source direc-
tions of all input images are plotted on a single image,
where the true values are red and the estimated values
are green. The average error established as the angle
between the estimated value and the true value of a
light-source direction vector was 8.063 degrees.

The normals estimated according to the photomet-
ric stereo method using the light-source directions de-
termined in the previous step are shown in Figure 3
(b). The lower right sphere of Figure 3 (b) presents
the correspondence between normal vectors and RGB
color coding.

The results of normal mapping to the input shape
(Figure 4 (a)) with the estimated normals (Figure 3
(b)) are shown in Figure 4 (b). Reconstruction of
the detailed shape, such as the surface patterns and



Figure 4. Result: (a) Shape obtained by laser
range sensor. (b) Normal mapping result ob-
tained by our method.

scratches, which could not be obtained by the shape
measurement device alone, was confirmed.

6 Conclusion

This paper proposed a method for acquiring high-
density 3D shapes by employing the photometric stereo
method, even though the light-source direction is un-
known. The proposed method was confirmed as be-
ing capable of reconstructing the detailed mesostruc-
ture that could not be obtained by a laser range sensor
alone. By conducting preliminary image linearization,
subsequent light-source direction and normal estima-
tion can be expected to retain high precision compared
to other methods using images without performing lin-
earization. This method also imposes a smaller burden
on actual measurement work, since the light-source di-
rection does not need to be known. In this context,
the proposed method offers broad applicability.
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