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Abstract. We propose a method for extracting a shadow matte from a single
image. The removal of shadows from a single image is a difficult problem to solve
unless additional information is available. We use user-supplied hints to solve
the problem. The proposed method estimates a fractional shadow matte using a
graph cut energy minimization approach. We present a new hierarchical graph
cut algorithm that efficiently solves the multi-labeling problems, allowing our
approach to run at interactive speeds. The effectiveness of the proposed shadow
removal method is demonstrated using various natural images, including aerial
photographs.

1 Introduction

Shadows in an image reduce the reliability of many computer vision algorithms, such
as shape-from-X , image segmentation, object recognition and tracking. Also, shadows
often degrade the visual quality of the images, e.g., causing inconsistencies in a stitched
aerial photograph. Shadow removal is therefore an important pre-processing step for
computer vision algorithms and image enhancement.

Decomposition of a single image into a shadow image and a shadow-free image is
essentially a difficult problem to solve unless additional prior knowledge is available.
Although various types of prior information have been used in previous approaches, the
task of shadow removal remains challenging. Because the previous techniques do not
use a feedback loop to control the output, it has not been possible to refine the output in
the intended manner. As a result, it is still a time-consuming task to remove the shadows,
especially from the more difficult examples. To address this problem, we developed an
efficient computation method for the shadow removal task. Unlike the previous shadow
removal methods, our method allows the user to interactively and incrementally refine
the results. The interaction speed is achieved by using a new formulation for shadow
removal in a discrete optimization framework and a solution method.

The chief contributions of this paper are as follows:
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MRF formulation for shadow removal We, like Nielsen and Madsen [1], formulated
the problem of shadow matte computation in a Markov random field (MRF) frame-
work. Unlike their approach, we used the user-supplied hints fully as prior infor-
mation, while discrete optimization techniques can find the best solution using the
prior information.

Hierarchical graph cut To achieve the interactive speed, we developed a hierarchi-
cal optimization method for the multi-labeling problem. The method produces a
sub-optimal solution, and has the order of log n time complexity, while the α-
expansion [2] and Ishikawa’s graph cut [3] have the order of n time complexity.

Interactive optimization Our system interactively and incrementally updates the esti-
mates of the shadow matte. The estimates are refined by the user via a stroke-based
user interface.

We validated the effectiveness of our technique quantitatively and qualitatively using
various different input images.

1.1 Prior work

Shadow removal algorithms can be categorized into two classes: multiple-image and
single-image methods. Weiss [4] proposed a multiple-image method for decomposing
an input image sequence into multiple illumination images and a single reflectance
image. This method was extended by Matsushita et al. [5] to produce multiple illumi-
nation images and multiple reflectance images. These methods require several images
taken from a fixed viewpoint, which limits their application.

Both automatic and interactive techniques have been proposed for the removal of
shadows from a single image. Finlayson et al. [6] presented an automatic method that
detects the shadow edge by entropy minimization. Fredembach and Finlayson [7] ex-
tended that method to improve the computational efficiency. These two methods aim to
detect the shadow edges using physics-based methods, but they require the illumination
chromaticity of the shadow area to be different to that of the non-shadow area. On the
other hand, Tappen et al. [8] took a learning-based approach by creating a database of
edge images to determine the shadow edges robustly.

Instead of using the edge information, other works use the brightness information.
Baba et al. [9] estimated gradually changing shadow opacities, assuming that the scene
does not contain complex textures. Conversely, the method proposed by Arbel and
Hel-Or [10] can handle scenes with complex textures, but it does not handle gradual
changes in the shadow opacity. Nielsen and Madsen [1] proposed a method that can es-
timate gradually changing shadow opacities from complex textured images. However,
their method remains limited due to the simple thresholding method used to detect the
shadow edges.

Recently, interactive methods have been gaining attention, enabling the user to sup-
ply hints to the system to remove shadows from difficult examples. Wu and Tang’s
method [11,12] removes shadows when given user-specified shadow and non-shadow
regions. It adopts a continuous optimization method that requires many iterations to
converge. As a result, it is not straightforward to use their method in an interactive and
incremental manner. Our method solves this problem by formulating the problem in an
MRF framework.
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Fig. 1. Illustration of the shadow removal process. (a) The input is a single image. (b)
The image is segmented into small super-pixels that are used in steps (c) and (d). (c)
The user draws strokes to specify the shadow, non-shadow, and background regions.
(d) Our graph cut shadow removal algorithm is applied to the image using default pa-
rameters. (e) The user specifies any defective areas in the results from step (d), and
the graph cut shadow removal algorithm recalculates a shadow-free image using the
updated parameters. (f) The resulting shadow-free image.

1.2 Overview of our approach

The overview of our shadow removal method is illustrated in Fig. 1. First, we automat-
ically over-segment the input image to produce a set of super-pixels. In the next stage,
region segmentation stage, the user specifies the shadow, non-shadow, and background
regions using a stroke-based interface such as Lazy Snapping [13]. Using the likelihood
of the non-shadow region as prior information, our method removes the shadows using
a hierarchical graph cut algorithm at this initial removal stage. To further improve the
results, the user can specify areas where the shadow was not perfectly removed. The
parameters of the hierarchical graph cut algorithm are updated by additional user inter-
action at this interactive refinement stage, and the improved output is displayed to the
user rapidly.

2 MRF formulation of shadow removal

This section describes our graph cut shadow removal algorithm. We begin with the
image formation model of Barrow and Tenenbaum [14]. The input image I can be
expressed as a product of two intrinsic images, the reflectance image R and the illumi-
nation image L, as

I = RL. (1)

The illumination image L encapsulates the effects of illumination, shading, and shad-
ows. We can further decompose the illumination image into L = βL′, where β repre-
sents the opacity of the shadows, defined as a function of the shadow brightness, and L′

represents the other factors of L. Hence, Eq. (1) can be written as I = βRL′, or more
simply,

I = βF, (2)

as in Wu and Tang [11]. Here, F represents the shadow-free image. β and F are interde-
pendent, i.e., if we know β, we also know F . Therefore, our problem is the estimation
of β from the input image.



We designed an energy function characterized by four properties: (1) the likelihood
of the texture (Dt); (2) the likelihood of the umbra (Du); (3) the smoothness of the
shadow-free image F (Df ); and (4) the smoothness of the shadow image β (V b).

E(β) =
∑
p∈P

{
λtD

t
p(βp) + λuD

u
p (βp) + λfD

f
p (βp)

}
+

∑
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b
p,q(βp, βq), (3)

where E(β) is the total energy of all nodes P and edgesN . The parameters λt, λu, λf ,
and λb are the weight factors of the corresponding cost variables. p and q represent the
node indices.

The likelihood cost of the texture Dt is related to the probability density function
(pdf) of the non-shadow region. Assuming that the likelihood P of the non-shadow
region is the same as the likelihood of the shadow-free image F , the cost function can
be formulated as

Dt
p(βp) = − logP (Ip/βp), p ∈ P, (4)

where I/β represents F . We represent the pdf P as a 1D histogram for each 1D color
channel. We do not estimate all three of the color channels using a 3D pdf, since graph
cuts cannot optimize a vector.

Dividing the average intensity of the non-shadow region by the average intensity
of the shadow region yields a good initial estimate for β, which we denote as β0. At
the initial removal stage, we, like Wu and Tang [11], use β0 as an initial value for β.
The inner part of the shadow region (the umbra) has a value which is close to β0, while
the shadow boundary (the penumbra) varies from β0 to 1, with 1 representing a non-
shadow region. In order to express the above characteristics, we introduce the following
cost function for Du:

Du
p (βp) = |βp − β0|0.7 + |βp − 1|0.7, p ∈ P. (5)

L0.7-norm is useful for separating two types of information [15], and we also use it
here to decompose the input image into the shadow and non-shadow images.

We also employ a smoothness term for the shadow-free image F and the shadow im-
age β. The hierarchical graph cut is based on the α-expansion [2], and the α-expansion
requires the smoothness measure to be a metric [2]. The Euclidean distance is a metric,
and thus we set the smoothness term of the shadow image β as follows:

V bp,q(βp, βq) = |βp − βq|, {p, q} ∈ N . (6)

Although the smoothness term defined in Eq. (6) can be solved using either the α-
expansion or Ishikawa’s method [3], we solve it using a hierarchical graph cut in order
to reduce the computation time.

We also set the smoothness term of the shadowless image, but because F = I/β,
we cannot define a metric cost. We therefore calculate the smoothness term of the shad-
owless image as follows and add it to the data term:

Df
p (βp) = |∇(Ip/βp)|2, p ∈ P. (7)

The value Fp = Ip/βp is calculated by fixing Fq where q denotes the neighboring pixels
of p.



(a) User input (b) Region segmentation (c) Over-segmentation

Fig. 2. Results of image segmentation. (a) Shadow, non-shadow, and background re-
gions specified by red, blue, and green strokes drawn by the user. (b) The image seg-
mented into shadow, non-shadow, and background regions represented as red, blue, and
green regions. (c) The image segmented into small super-pixels.

In order to construct the prior functions Dt and Du in Eq. (3), we separate the
image into three regions: shadow, non-shadow, and background (Fig. 2 (b)). Like the
previous image segmentation methods [13,16], we ask the user to mark each region
using a stroke-based interface, as shown in Fig. 2 (a). Also, to accelerate the region seg-
mentation stage, we segment the image into small super-pixels in the over-segmentation
stage [13,16], as shown in Fig. 2 (c).

3 Interactive parameter optimization

In this section, we explain how to interactively update the weighting parameters λ intro-
duced in Eq. (3). Note that, in the initial removal stage, we apply our graph cut shadow
removal algorithm with the default weighting parameters.

The interactive parameter optimization algorithm is described in the following for-
mula.

Λ̂ = argmin
Λ

∑
p∈Ω0

|β̂p − βµ|2, s.t . {β̂p|p ∈ Ω0} = graph cut(βp|p ∈ Ω0;Λ), (8)

where Λ ≡ {λt, λu, λf , λb}. The system automatically updates the parameters Λ so
that the shadow image β will be close to the ideal value βµ. The ideal value is specified
from the starting point of the stroke input by the user. The area to be examined is
specified by the painted areaΩ0. By considering the trade-off between the precision and
the computation speed, we limited the iterations of Eq. (8) to 4. Eq. (8) represents the
case for the shadow image β, and the case for the shadow-free image F is similar. The
system increases λt and λf for smooth textures, and increases λu and λb for constant
shadow areas (Fig. 3).

4 Hierarchical graph cut

In order to improve the computation speed of the n-label graph cut, we propose a hi-
erarchical graph cut. The algorithm uses a coarse-to-fine approach to run more quickly
than both the α-expansion method [2] and Ishikawa’s method [3].
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Fig. 3. The image enhanced by user-specified strokes. According to the user’s strokes,
the algorithm automatically finds the parameters which reflect the user’s intentions. The
strokes are represented by magenta pixels. In this example, 1–3rd strokes are added to
the shadow-free image and 4–6th strokes are added to the shadow image. (a) is the input
image, (b) is the initial state, and (c)–(h) are the results after the 1–6th strokes.

We first explain the benefits of our approach as compared with the previous meth-
ods. A hierarchical approach to region segmentation or image restoration has been pre-
viously studied [17,18,19,20,21]; however, few methods have employed a hierarchical
approach which can be applied to other applications. Juan et al. [22] use an initial value
before solving a graph cut to increase the computation speed, but it is only twice as
fast as the α-expansion. A method called LogCut proposed by Lempitsky et al. [23] is
much faster, but it requires a training stage before it can be applied. On the other hand,
the method proposed by Komodakis et al. [24] does not need any training stages, but
the method only improves the computation time of the second and subsequent itera-
tions, not the first iteration. We propose a hierarchical graph cut which is faster than the
α-expansion when applied to a multi-label MRF.

The pseudo-code of the hierarchical graph cut is described in Algorithm 1. For each
iteration, the α-expansion solves the 2-label MRF problem, where one is the current
label and the other is stated as α. Our hierarchical graph cut uses multiple “α”s for each
iteration (line 11 and line 12 in the algorithm 1). The list of multiple αs is represented
by A in line 2, and is defined as:

A0 = {0} , A1 =
{n

2

}
, A2j =

2j−1−1⋃
k=0

{
1 + 4k
2j+1

n

}
, A2j+1 =

2j−1−1⋃
k=0

{
3 + 4k
2j+1

n

}
,

(9)
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Fig. 4. Graph construction for our graph cut. [x]+ = max(0, x). The nodes p and q
are the neighboring nodes. The node a is the auxiliary node added in order to set the
weights properly. The nodes α and β are the sink and source nodes, respectively.

Algorithm 1 Hierarchical graph cut
1: B ≡ {βp|p ∈ P} ⇐ initial value
2: A⇐ Eq. (9)
3: success⇐ 0
4: for i = 0 to 2 log2 n− 1 do
5: g ⇐ null
6: for all p ∈ P do
7: αp ⇐ argminα∈Ai

|βp − α|
8: g ⇐ g ∪ graph(αp, βp) // see

Fig. 4
9: end for

10: for all {p, q} ∈ N do
11: αp ⇐ argminα∈Ai

|βp − α|
12: αq ⇐ argminα∈Ai

|βq − α|
13: g ⇐ g∪graph(αp, αq, βp, βq) // see Fig. 4
14: end for
15: B′ ⇐ max-flow(B, g)
16: ifE(B′) < E(B) thenB ⇐ B′, success⇐

1
17: end for
18: if success = 1 then goto 3

where j represents the level of the hierarchical structure, and n represents the number
of labels. A represents the hierarchical structure since the number of A increases ex-
ponentially (i.e., |Ai| = max(1, 2b

i
2 c−1)). Our method only requires 2 log2 n times for

each iteration (line 4 in the algorithm 1) thanks to the hierarchical approach, while the
α-expansion needs n times for each iteration. Although Ishikawa’s method does not
require any iterations, the computation time is almost the same as for the α-expansion,
since the number of nodes for the computation is n times larger than for theα-expansion.

5 Experiments

5.1 Hierarchical graph cut

First, we experimentally validate the performance of the hierarchical graph cut algo-
rithm in three domains: shadow removal, image restoration, and stereo matching. We
used the stereo data sets introduced in [25]. The results shown in Fig. 5 indicate that our
algorithm produces similar results to the α-expansion [2] and to Ishikawa’s method [3].
Table 1 shows that the hierarchical graph cut is 3 to 16 times (or 5 to 8 times) faster than
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Fig. 5. Results of our hierarchical graph cut. (a), (b), (c), (d), and (e) show the input,
the ground truth, the result for Ishikawa’s method, the result for α-expansion, and the
result for the hierarchical graph cut, respectively.
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Fig. 6. The plot of the value of overall cost of experiment “stereo matching 2” vs. the
time (a) or iteration (b).

the α-expansion (or Ishikawa’s method). The change in the value of the cost function
at the first iteration is large, while it is negligible after the second iteration, as shown
in Fig. 6. The disadvantage of the hierarchical graph cut is that the result depends on
the initial value when there are many local minima, as shown in the stereo matching re-
sult. Due to its fast computation speed, we use the hierarchical graph cut in our shadow
removal algorithm instead of the α-expansion and Ishikawa’s method.



Table 1. Computation speed of our h-cut. The first row specifies the experiments. The
second and third rows show the number of labels used and the image size. The fourth
and fifth rows show the ratio of computation times for x-cut vs. h-cut and a-cut vs. h-
cut. The error differences for h-cut minus x-cut and h-cut minus a-cut are shown in the
sixth and seventh rows, where a positive value means that the other methods outperform
our method. The number of iterations required until convergence occurs is shown in the
eighth and ninth rows for a-cut and h-cut. x-cut does not need iterations. The memory
size required is shown in the tenth, eleventh, and twelfth rows for x-cut, a-cut, and h-
cut.
[notations] x-cut: Ishikawa’s exact optimization. a-cut: α-expansion. h-cut: Hierarchical
graph cut.

Problem Stereo Stereo Image Shadow
matching 1 matching 2 restoration removal

Labels 128 128 256 64
Image size 543× 434 480× 397 256× 256 640× 480
Speed-up vs. x-cut ×5.2 ×5.9 ×8.0 ×6.4

vs. a-cut ×6.8 ×11.4 ×16.6 ×3.4
Error vs. x-cut +5.0% +3.2% +0.6% +0.0%
difference vs. a-cut +4.6% +3.0% −0.4% +0.0%
Iteration a-cut 8 7 10 4

h-cut 10 5 7 6
Allocated x-cut 6, 748 MB 5, 537 MB 5, 306 MB 4, 538 MB
memory a-cut 106 MB 111 MB 65 MB 482 MB

h-cut 106 MB 120 MB 64 MB 482 MB

5.2 Shadow removal

Natural image Our shadow removal results are shown in Fig. 7. The shadows were re-
moved effectively while the complex textures of the images were preserved. We express
the shadow opacity using 64 discrete values, but these results show that this discretiza-
tion does not cause any strong defects. The number of user interactions required for
parameter optimization is listed in Table 2. The system displays the output image at the
responsive speed.

Aerial images In aerial images, the shadows of buildings fall both on the ground and
on neighboring buildings. Neighboring aerial images are often taken at different times,
so that when they are stitched together, there may be a seam where the different images
meet. Thus, it is important to remove the shadows in the aerial images, which are shown
in Fig. 8.

Evaluation In Fig. 9, we show how our method benefits from the user interaction.
The results are evaluated quantitatively using the ground truth. Our results improve
gradually when the user interacts with the system. The computation times for the results
shown in Fig. 9 (a) using a 3 GHz desktop computer are 21 [sec], 336 [sec], and 65 [sec]
for the main part of the algorithm for Finlayson’s method [6], Wu’s method [12], and
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Fig. 7. Our shadow removal results. The first and fourth columns show the input images,
the second and fifth columns show the shadow-free images, and the third and sixth
columns show the shadow images.

Table 2. Computation time for our shadow removal. The first column gives the images
from Fig. 7. The second column shows the size of each image. The third column shows
the number of user interactions used for parameter optimization. The fourth column
shows the computation time for each user interaction.

Image Image size Strokes† Average time per stroke

(a) wall 640× 480 [px] 8 1.5 [sec]
(b) man 320× 240 [px] 4 1.2 [sec]
(c) grass 640× 480 [px] N/A N/A
(d) family 640× 480 [px] 1 1.4 [sec]
(e) women 640× 480 [px] 12 2.0 [sec]
(f) horse 640× 480 [px] 6 2.1 [sec]
(g) statue 320× 240 [px] 15 1.9 [sec]
(h) wine 640× 320 [px] 40 2.8 [sec]

† = Number of strokes for parameter optimization

our method until convergence, respectively; while the computation times for Fig. 9 (b)
are 8 [sec], 649 [sec], and 53 [sec].

6 Conclusions and discussions

We present a method for user-assisted shadow removal from a single image. We have
expressed the shadow opacity with a multi-label MRF and solved it using a hierarchical
graph cut. Our hierarchical graph cut algorithm allows the system to run at interactive
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Fig. 8. Application to aerial images. The input image and the shadow-free image are
shown.
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Fig. 9. Comparison between our method, Finlayson’s method, and Wu’s method. The
root mean square error (RMSE) is calculated by comparison with the ground truth. The
solid line represents our results and the dashed lines represent Finlayson’s results and
Wu’s results.

speeds. The weighting parameters for each cost term are automatically updated using
an intuitive user interface.

In order to robustly remove the shadows, we have defined several cost terms. Our
system does not work well for images which deviate from the ability to represent these
cost terms in extreme ways. Using user-supplied hints, the coefficients of each cost term
are adjusted, and the method can be applied to both hard shadows and soft shadows.

The hierarchical graph cut solves multi-label MRF problems 3 to 16 times faster
than α-expansion [2] and Ishikawa’s graph cut [3]. One limitation of this graph cut
method is that it requires an initial value. A good initial value is usually available in
most applications in the computer vision field, so in most cases this is not a problem.

Acknowledgments. The authors thank Tai-Pang Wu, Jun Takamatsu, and Yusuke Sug-
ano for useful discussions.
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