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Abstract

The photometric stereo method is useful for modeling the
fine detail of the surface shape of an object. In this paper,
we propose a photometric stereo method that uses a graph
cut solution. We formulate the photometric stereo problem
to the Markov random field problem, and show how to solve
the problem by graph cut. The graph cut properly calculates
the surface normal and automatically evades the interfer-
ence of specular reflection. Finally, we show some results
when our method is applied to common objects (a diffuse
object and a specular object), and to cultural assets, the
Segonko Tumulus and Sakurakyo Tumulus.

1. Introduction

It is a benefit to society to allow people to become fa-
miliar with precious cultural assets by displaying these ob-
jects through the Internet or mobile phones. We can do this
by digitally archiving these works, using the photometric
stereo method, which preserves the fine detail of the sur-
face shape of such works. We propose a photometric stereo
method that can robustly estimate the surface normal and
the albedo of these objects and can be applied to objects
that involve both diffuse and specular reflection. The key
ideas of our algorithm are as follows:

Candidates. Since we take many images under different
light conditions, we can choose the data that are not
affected by specular reflection and shadow. The prob-
lem is how to choose the correct data from candidates
[4, 7]. We use graph cut [3, 6, 5] since it can find a
solution that is very close to the global minimum.

M-estimation. Some data include specular reflection and
shadow; thus, we design a data cost term using M-
estimator [10] so that these effects are treated as out-
liers. We use the Lorentz distribution function instead
of the Laplace distribution function [7], since it per-
forms better for removing outliers. M-estimation often
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causes many local minima; thus, we use graph cut to
avoid them.

L2-norm. We use L2-norm instead of L1-norm for the
smoothness term since it can represent the smooth sur-
face well. Due to this L2-norm and for other reasons,
our smoothness term is not semimetric [3], regular [6],
or convex [5]. Since we cannot apply these graph cut
methods [3, 6, 5], we use truncated α-expansion.

Truncated α-expansion. We introduce a simple but effec-
tive idea that can apply α-expansion [3] to an arbitrar-
ily defined smoothness term. Graph cut is proven to be
useful in photometric stereo [4, 13]; thus, we also use
it to solve our problem.

1.1. Related work

Various types of methods are proposed to enhance the ac-
curacy of photometric stereo. Miyazaki et al. [7] employed
the Laplace distribution function as M-estimator to remove
the influence of specular reflection. Wu and Tang [14]
estimated the surface normal and the albedo robustly us-
ing the Expectation-Maximization algorithm. Some meth-
ods can be applied to non-Lambertian objects [11, 1, 8].
Chandraker et al. [4] chose the non-shadow image using
the graph cut method; however, they did not introduce the
smoothness constraint for surface normal. Wu et al. [13]
utilized the smoothness constraint for surface normal. How-
ever, their method discretized the surface normal. Unlike
Wu’s method, our method does not discretize the surface
normal; thus, it produces smoother and more natural re-
sults. Unlike Chandraker’s method, our method utilizes the
smoothness constraint for surface normal.

1.2. Overview

The overview of the rest of the paper is as follows. Sec-
tion 2 explains our graph cut photometric stereo. Section
3 explains our truncated α-expansion. Section 4 shows our
results. Finally, in Section 5, we conclude that we have
proposed a graph cut photometric stereo that is robust to
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shadow and specularity, and that we have proposed a trun-
cated α-expansion that can be applied to many kinds of
problems. We also discuss the disadvantage of our method
in this section.

2. Graph cut photometric stereo

In this section, we describe our photometric stereo
method. The cost term to be minimized by graph cut is
shown in Section 2.1, and the labels used for graph cut are
defined in Section 2.2. The overall algorithm is shown in
Section 2.3.

2.1. Photometric stereo using graph cut

A min-cut/max-flow algorithm is often called a “graph
cut” algorithm. Graph cut is a powerful tool to find the
global solution of the Markov random field (MRF) problem
[3, 6, 5]. We use the graph cut to choose the best surface
normal and albedo from the candidates calculated in Sec-
tion 2.2. We denote these candidates as label f . The graph
cut solves the MRF problem whose data term and smooth-
ness term are described as follows:

Edata(f) =
∑
p∈P

Dp(fp) , (1)

Esmooth(f) =
∑

{p,q}∈N
Vp,q(fp, fq) . (2)

In order to be robust to outliers, we propose the following
data cost term:

Dp =
∑

k

Mest (Ik,p − rp (np · Lk)) , (3)

where k represents the image number, I represents the pixel
brightness of the input image, r represents the albedo, n
represents the surface normal, and L represents the light
source direction and its brightness. Here we assume that the
light source direction and its brightness are known. I and r
are three-dimensional vectors which represent RGB chan-
nel, and n and L are three-dimensional vectors which repre-
sent XYZ axes. We apply the graph cut to estimate the sur-
face normal and the albedo alternatively. When calculating
the albedo r, we minimize Dp(rp) while fixing the surface
normal to be the current value. On the other hand, when cal-
culating the surface normal n, we minimize Dp(np) while
fixing the albedo to be the current value. In order to avoid
the outlier caused by some images, we use M-estimator.
Here, we use Lorentz function, Mest(x) = ln(1+ ‖x‖2/2),
for M-estimator, since it effectively removes outliers.

Many graph cut methods use L1-norm as a smoothness
term. L2-norm is more appropriate to express the smooth-
ness; thus, we use the following smoothness term:

Vp,q(fp, fq) = (fp − fq)
2

, (4)

where p and q represent two neighboring pixels. The
smoothness term for albedo and surface normal are
Vp,q(rp, rq) and Vp,q(np,nq), respectively.

We explain the detail of the algorithm in Section 2.3. The
definition of the candidates for surface normal and albedo
is presented in Section 2.2, and this definition makes the
smoothness terms defined above not to be semimetric [3],
regular [6], or convex [5]. The conventional graph cut
[3, 6, 5] cannot be applied; thus, we use a simple trun-
cated α-expansion algorithm shown in Section 3 to solve
the problem.

2.2. Candidates for surface normal

The following candidates of surface normal and albedo
are used for the labels when applying the graph cut pho-
tometric stereo (Section 2.1). The surface normal can be
estimated from three images by using conventional photo-
metric stereo. We denote the number of input images as K.
The number of the combination of choosing three images
from K images will be:

KC3 =
(

K

3

)
=

K!
3!(K − 3)!

=
1
6
K(K−1)(K−2) . (5)

We obtain KC3 numbers of surface normal and albedo for
each pixel [7]. For each pixel, among K brightnesses, some
brightnesses are caused by diffuse reflection, while others
may be caused by specular reflection or shadow. Therefore,
some of the KC3 surface normals are correctly calculated
by three diffuse brightnesses, while others may be wrong.
Graph cut chooses the correct surface normal from these
candidates. The candidate of surface normal cannot be cal-
culated if the chosen three light sources are coplanar; and in
this case, we set a randomly determined surface normal for
the candidate so that it can be automatically detected as an
outlier.

Since the surface normal is not discretized, this approach
is more useful than Wu’s [13]. Wu’s graph cut photomet-
ric stereo [13] divides a unit sphere in 3D space evenly in
small regions, and uses the divided triangles’ orientation as
the candidates for the surface normal. The problem of their
approach is the discretization of the surface normal, while
we use the surface normal calculated from input images as
the candidates.

The problem with our approach is that there would be
many candidates. The number of the surface normal in-
creases in cubic proportion; namely, O(KC3) = O(K3).
Wu et al. used 5057 candidates [13]. If we use 33 images or
more, the number of the candidates will be 5456 or more,
and our approach will be more redundant than Wu’s. In the
case where the number of input images is 33 or more, we
randomly pick 32 or fewer than 32 images and apply our
algorithm.



2.3. Algorithm overview

The outline of our algorithm becomes as follows:

1. Calculate KC3 candidates for surface normal and
albedo for each pixel. (Section 2.2)

2. Set initial value for the surface normal and the albedo.
(Section 2.3)

3. Using truncated α-expansion, estimate the surface nor-
mal by fixing the albedo. (Section 3)

4. Using truncated α-expansion, estimate the albedo by
fixing the surface normal. (Section 3)

5. Iterate steps 3–4 until convergence.

6. Height map is calculated from the surface normal.

The cost function we have to minimize is Esmooth +
λEdata (Eq. (1) and Eq. (2)), where λ is set manually. An
initial value is chosen randomly from the candidates for
each pixel.

3. Truncated alpha expansion

Existing methods have restrictions on the smoothness
term. The smoothness measure should be one of these:
semimetric [3], metric [3], regular [6], or convex [5]. We
simply modify the previous method [3] to avoid this prob-
lem.

3.1. Two-label Markov random field

The graph cut algorithm minimizes the following cost
function:

E(f) =
∑
p∈P

Dp(fp) +
∑

{p,q}∈N
Vp,q(fp, fq) . (6)

If the smoothness term V (fp, fq) satisfies the following
condition, it is said to be regular [6].

V (f0, f0) + V (f1, f1) ≤ V (f0, f1) + V (f1, f0) , (7)

where f0 and f1 are certain labels. If there are only two
types of labels, f0 and f1, and Eq. (7) is satisfied, then
Eq. (6) can be globally minimized by setting the edge
weight as shown in Fig. 1 [6]. In Fig. 1, the weight of the
edge “e” is set as follows.

max(0, V (fp,0, fq,1) + V (fp,1, fq,0)
−V (fp,1, fq,1) − V (fp,0, fq,0)) . (8)

If Eq. (7) is satisfied, the truncation does not occur; thus, we
can correctly minimize Eq. (6). If Eq. (7) is not satisfied,
the edge weight is truncated; we cannot correctly minimize

Algorithm 1 Truncated α-expansion

1: F ≡ {fp|p ∈ P} ⇐ initial value
2: success ⇐ 0
3: for i = 1 to n do
4: g ⇐ ∅
5: for all p ∈ P do
6: g ⇐ g ∪ node(D(αp,i),D(fp)) // see Fig. 1
7: end for
8: for all {p, q} ∈ N do
9: g ⇐ g ∪ edges(V (αp,i, αq,i), V (αp,i, fq),

V (fp, αq,i), V (fp, fq)) // see Fig. 1
10: end for
11: F ′ ⇐ max-flow(g)
12: if E(F ′) < E(F ) then
13: F ⇐ F ′

14: success ⇐ 1
15: end if
16: end for
17: if success = 1 then goto 2

Eq. (6). However, the truncation is necessary since the edge
weight should not be negative in order to apply the graph
cut. Due to this truncation, the result will often be worse
than α-expansion. We discuss the influence of the trunca-
tion in the next section.

3.2. Multi-label Markov random field

In this section, we show an algorithm for the case when
there are multiple labels. We use the same iterative frame-
work as for the α-expansion algorithm [3]. Our truncated
α-expansion algorithm is shown in Algorithm 1. In this
pseudo-code, F represents the labels for each pixel and g
represents the graph structure. In line 6 and line 9, we set
the weight of the edges as shown in Fig. 1. The number
of labels is n (line 3). Line 11 solves the graph cut prob-
lem where there are two labels, fp and αp,i, for each pixel.
In line 11, we use the min-cut/max-flow algorithm (graph
cut algorithm) developed by Boykov and Kolmogorov [2].
The algorithm takes an iterative approach; fp represents the
current label and αp,i represents the chosen label. This iter-
ation is performed until convergence. E represents the error
function (Eq. (6)), and line 12 checks the convergence.

One of the differences between our method and the α-
expansion algorithm is the truncated edge weight shown in
Eq. (8). This modification does not assure theoretically to
find the global minimum of the cost function; however, it
often produces results good enough to be close to or exactly
the same as the global minimum. Our algorithm is guar-
anteed to always decrease the cost function, and to finally
converge.



edge weight

a V (αp, αq) + V (fp, αq)
b V (αp, αq) + V (αp, fq)

Smoothness c V (fp, fq) + V (αp, fq)
term d V (fp, fq) + V (fp, αq)

e max(0, V (fp, αq) + V (αp, fq) − V (αp, αq) − V (fp, fq))
Data f D(αp)
term g D(fp)

Figure 1. Graph construction for our graph cut. The nodes p and q are the neighboring nodes. Note that for node p, the weight of the edge
between node p and sink, for example, would be D(αp) + V (αp, αq) + V (αp, fq).

Figure 2. Result of diffuse object, “agastia”: (1a) Azimuth angle of
surface normal (red: upper direction, blue: left-bottom direction,
green: right-bottom direction), result of Wu’s photometric stereo
(PS); (2a) Zenith angle of surface normal (blue: 0◦, red: 90◦),
Wu’s PS; (1b) Azimuth angle, our PS; (2b) Zenith angle, our PS.

4. Experimental results

4.1. Qualitative evaluation

First, we use an object which we denote as “agastia,”
to compare our result with the method proposed by Wu et
al. [13] (Fig. 2). This object has only diffuse reflection, is
made of ceramics, and its design is based on Jurojin, one of
Japan’s Seven Lucky Gods.

Fig. 2 (b) is the surface normal estimated by using our
graph cut photometric stereo. Fig. 2 (a) is the surface nor-
mal estimated by the photometric stereo proposed by Wu et
al. [13]. Although Wu et al. use graph cut, they discretize
the surface normal; thus, clumsy defects appear in the re-
sult.

Next, we use an object which we denote as “ichima,” to
compare our result with the method proposed by Miyazaki
et al. [7] (Fig. 3). This object has specular reflection, is
made of ceramics, and its design is based on the traditional
Japanese Ichimatsu doll.

Figure 3. Result of specular object, “ichima”: (a) Result of median
photometric stereo, (b) Result of our graph cut photometric stereo.

Table 1. Evaluation using RMSE (root mean squared error) of four
types of photometric stereo (PS) methods.

Height RMSE Normal RMSE
Conventional PS 0.69 cm ( 90%) 15.22◦ (148%)
Median PS 0.64 cm ( 83%) 9.74◦ ( 95%)
Wu’s graph cut PS 0.61 cm ( 79%) 10.12◦ ( 99%)
Our graph cut PS 0.77 cm (100%) 10.27◦ (100%)

Fig. 3 (b) is the estimated shape by using our graph cut
photometric stereo. Fig. 3 (a) is the shape estimated by the
photometric stereo proposed by Miyazaki et al. [7]. Our
result is less affected by the specular reflection that can be
found at the face rendered from the estimated albedo and
surface normal.

4.2. Quantitative evaluation

Fig. 4 (e) shows the result of our method applied to the
diffuse object “agastia” that is 15 cm tall. We used six input
images for this experiment. Fig. 4 (a) is a ground truth ob-
tained by scanning the object by Konica-Minolta VIVID910
laser range sensor. Fig. 4 (b) is the result of conventional



Figure 4. Comparison: (1) Azimuth angle (red: upper direction, blue: left-bottom direction, green: right-bottom direction), (2) Zenith
angle (blue: 0◦, red: 90◦), (3) The difference of the height (the brighter the noisier), (4) The difference of the surface normal (the brighter
the noisier), (a) True value, (b) The result of conventional PS (photometric stereo), (c) The result of median PS, (d) The result of Wu’s
graph cut PS, (e) The result of our graph cut PS, (f) The error of conventional PS, (g) The error of median PS, (h) The error of Wu’s graph
cut PS, (i) The error of our graph cut PS.

PS from three certain input images. Fig. 4 (c) is the re-
sult of Miyazaki’s method [7]. Fig. 4 (d) is the result of
Wu’s method [13]. Unfortunately, the comparison in Table
1 shows that the proposed method is slightly worse than the
other methods. Since the candidates are fixed, the surface
normal is only calculated using three brightnesses. A possi-
ble solution would be to perturb the surface normal in order
to find a better solution.

The results applied to the diffuse object “buddha” is
shown in Fig. 5 (1), and that applied to the specular ob-
ject “sphere” is shown in Fig. 5 (2). One of the input image
out of eight input images is shown in Fig. 5 (a). Fig. 5 (b)
is the result of conventional PS from the eight input images.
Fig. 5 (c) is the result of Chandraker’s method [4]. Fig. 5
(d) is the result of Wu’s method [13]. Fig. 5 (e) is the re-
sult of Miyazaki’s method [7]. Fig. 5 (f) is the result of the
proposed method. Unfortunately, the comparison in Table 2
shows that the proposed method is slightly worse than Wu’s
method. Wu’s mehod slightly depends on the data cost term
when solving the graph cut, while our method and Chan-
draker’s method depend on the data cost term rather than
the smoothness cost; thus, Wu’s method produces smoother
result than other methods. The reconsideration of the cost
terms will be our future work.

4.3. Application to a historical cultural asset

In order to verify the usefulness of our method, we ap-
plied our method to a historical cultural asset called the
Segonko Tumulus, which is located in the Kumamoto pre-
fecture in Japan. The tumulus was built around A.D. 500.
Its wall is not only carved but also painted with red, green,

Figure 5. Result of (1) diffuse object, “buddha,” and (2) specular
object, “sphere”: (a) One of the input images, (b) Result of con-
ventional PS (photometric stereo), (c) Result of shadowcut PS, (d)
Result of Wu’s PS, (e) Result of median PS, (f) Result of our graph
cut photometric stereo.

Table 2. Evaluation using RMSE (root mean squared error) of five
types of photometric stereo (PS) methods.

Normal RMSE
Conventional PS 20.69◦ (149%)
Shadow cut PS 41.61◦ (300%)
Wu’s graph cut PS 11.13◦ ( 80%)
Median PS 13.76◦ ( 99%)
Our graph cut PS 13.85◦ (100%)

and yellow. To preserve the current state of the painting, the
tumulus is not open to the public; thus, providing it digitally
for common view is important. The measurement system is
shown in Fig. 6. The tumulus is a very small chamber, and
only one or two people can go inside (Fig. 7). The input im-
ages are shown in Fig. 8 (a). The images rendered from the



Figure 6. Measurement system “Photometric Wing” used for the
tumuluses.

Figure 7. The measurement system capturing images inside the
small cave.

Figure 8. (a) Input images, and (b) rendered images of Segonko
Tumulus.

estimated albedo and the surface normal are shown in Fig. 8
(b). A typhoon attacked us on the first day of our scanning
mission. We captured the images another day; however, the
wall was wet. The specularities occurred on the surface of
the wall, but our method was not affected by such specular-
ities. Note that the specularities are removed in Fig. 8 (b).
The result of the shape is shown in Fig. 9. We can clearly
detect the hole in the center of the concentric circles, and
thus we were able to give evidence to the opinion of the ar-
chaeologist that the circle was carved by using compasses.

We also applied our method to a historical cultural as-
set called the Sakurakyo Tumulus, which is located in the

Figure 9. Result of applying our method to a segment of the
Segonko Tumulus, constructed around 500 A.D. This experiment
confirmed that compasses were used to create the concentric cir-
cles.

Fukuoka prefecture in Japan (Fig. 10 (a)). The tumulus was
built around the second half of the sixth century. Its wall
is not only carved with continuous triangle shape but also
painted with red, green, and yellow. To preserve the current
state of the painting, the tumulus is not open to the pub-
lic; thus, providing it digitally for common view is impor-
tant. We used the same measurement system as used in the
Segonko Tumulus. The chamber of the Sakurakyo Tumulus
is as small as that of the Segonko Tumulus. The result of
the shape is shown in Fig. 10 (b). We can clearly detect the
triangle shape of the carving, which are hardly recognizable
in the photos.

5. Conclusion

In this paper, we propose a photometric stereo that is use-
ful for digitizing the fine detail of cultural assets. Our graph
cut photometric stereo is robust to shadow and specular re-
flection.

The problem of calculating candidates for surface nor-
mal is the computation time, since it needs O(N3). How-
ever, our algorithm is still robust for a small number of im-
ages; thus, our method can be applied to a small number of



Figure 10. The wall of the Sakurakyo Tumulus. (a) Input images,
and (b) estimated shape.

images.
In this paper, the light source is assumed to be an infinite

far point light source (directional light source), and extend-
ing it to a point light source could be valuable future work.
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