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Interactive removal of shadows from a single image
using hierarchical graph cut

DAISUKE MIYAZAKI,†1,∗1,†3 YASUYUKI MATSUSHITA†2

and KATSUSHI IKEUCHI†1

We propose a method for extracting a shadow matte from a single image. The removal of
shadows from a single image is a difficult problem to solve unless additional information is
available. We use user-supplied hints to solve the problem. The proposed method estimates
a fractional shadow matte using a graph cut energy minimization approach. We present a
new hierarchical graph cut algorithm that efficiently solves the multi-labeling problems, al-
lowing our approach to run at interactive speeds. The effectiveness of the proposed shadow
removal method is demonstrated using various natural images, including aerial photographs.

1. Introduction

Shadows in an image reduce the reliability of many computer vision algorithms, such
as shape-from-X , image segmentation, object recognition and tracking. Also, shadows
often degrade the visual quality of the images, e.g., causing inconsistencies in a stitched
aerial photograph. Shadow removal is therefore an important pre-processing step for
computer vision algorithms and image enhancement.

Decomposition of a single image into a shadow image and a shadow-free image is
a difficult problem to solve unless additional prior knowledge is available. Although
various types of prior information have been used in previous approaches, the task of
shadow removal remains challenging. Because the previous techniques do not use a
feedback loop to control the output, it has not been possible to refine the output in the
intended manner. As a result, it is still a time-consuming task to remove the shadows,
especially from the more difficult examples. To address this problem, we developed an
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efficient computation method for the shadow removal task. Unlike the previous shadow
removal methods, our method allows the user to interactively and incrementally refine
the results. The interaction speed is achieved by using a new formulation for shadow
removal in a discrete optimization framework.

The chief contributions of this paper are as follows:
MRF formulation for shadow removal We, like Nielsen and Madsen22), formulated

the problem of shadow matte computation in a Markov random field (MRF) frame-
work. Unlike their approach, we used the user-supplied hints fully as prior infor-
mation, while discrete optimization techniques can find the best solution using the
prior information.

Hierarchical graph cut To achieve the interactive speed, we developed a hierarchical
optimization method for the multi-labeling problem. The method produces a sub-
optimal solution, and the number of applying max-flow/min-cut algorithm for each
iteration is 2 log2 n, while that of the α-expansion5) is n. Here, n represents the
number of labels.

Interactive optimization Our system interactively and incrementally updates the esti-
mates of the shadow matte. The estimates are refined by the user via a stroke-based
user interface.

We validated the effectiveness of our technique quantitatively and qualitatively using
various different input images.

1.1 Prior work
Shadow removal algorithms can be categorized into two classes: multiple-image and

single-image methods. Weiss29) proposed a multiple-image method for decomposing an
input image sequence into multiple illumination images and a single reflectance image.
This method was extended by Matsushita et al.19) to produce multiple illumination im-
ages and multiple reflectance images. These methods require several images taken from
a fixed viewpoint, which limits their application.

Both automatic and interactive techniques have been proposed for the removal of shad-
ows from a single image. Finlayson et al.9) presented an automatic method that detects
the shadow edge by entropy minimization. Fredembach and Finlayson10) extended that
method to improve the computational efficiency. These two methods aim to detect the
shadow edges using physics-based methods, but they require the illumination chromatic-
ity of the shadow region to be different to that of the non-shadow region. On the other
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2 Interactive removal of shadows from a single image using hierarchical graph cut

hand, Tappen et al.28) took a learning-based approach by creating a database of edge
images to determine the shadow edges robustly.

Instead of using the edge information, other works use the brightness information.
Baba et al.2) estimated gradually changing shadow opacities, assuming that the scene
does not contain complex textures. Conversely, the method proposed by Arbel and Hel-
Or1) can handle scenes with complex textures, but it does not handle gradual changes
in the shadow opacity. Nielsen and Madsen22) proposed a method that can estimate
gradually changing shadow opacities from complex textured images. However, their
method remains limited due to the simple thresholding method used to detect the shadow
edges.

Recently, interactive methods have been gaining attention, enabling the user to sup-
ply hints to the system to remove shadows from difficult examples. Wu and Tang’s
method30),31) removes shadows when given user-specified shadow and non-shadow re-
gions. It adopts a continuous optimization method that requires many iterations to con-
verge. As a result, it is not straightforward to use their method in an interactive and
incremental manner. Our method solves this problem by formulating the problem in an
MRF framework.

1.2 Overview of our approach
The overview of our shadow removal method is illustrated in Fig. 1. First, we au-

tomatically over-segment the input image to produce a set of super-pixels. In the next
stage, region segmentation stage, the user specifies the shadow, non-shadow, and back-
ground regions using a stroke-based interface such as Lazy Snapping16), and the regions
are segmented by the GrabCut algorithm24). Using the likelihood of the non-shadow re-
gion as prior information, our method removes the shadows by representing them as a
multi-label Markov random field (MRF). The shadow removal is performed using a hi-
erarchical graph cut algorithm, and the output is shown to the user at a responsive speed.
The default parameters of the hierarchical graph cut are used at this initial removal stage.
To further improve the results, the user can specify areas where the shadow was not per-
fectly removed. The parameters of the hierarchical graph cut algorithm are updated by
additional user interaction at this interactive refinement stage, and the improved output
is displayed to the user rapidly.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1 Illustration of the shadow removal process. (a) The input is a single image. (b) The image is seg-
mented into small super-pixels that are used in steps (c) and (d). (c) The user draws strokes to specify
the shadow, non-shadow, and background regions. We denote the region where the shadow appears
in the input image as shadow region, and the region which has no shadow and has the same texture
as the shadow region as non-shadow region. The background region is the area where our shadow
removal software is not applied. (d) The shadow, non-shadow, and background regions after region
segmentation stage. (e) Our graph cut shadow removal algorithm is applied to the image using default
parameters. (f) The user specifies any defective areas in the results from step (d), and the graph cut
shadow removal algorithm recalculates a shadow-free image using the updated parameters. We de-
note the image where the shadow is removed as shadow-free image, and the image which represents
the shadow opacity as shadow image. (g) The resulting shadow-free image. (h) The resulting shadow
image.

2. MRF formulation of shadow removal

This section describes our graph cut shadow removal algorithm. We begin with the
image formation model of Barrow and Tenenbaum3). The input image I can be expressed
as a product of two intrinsic images, the reflectance image R and the illumination image
L, as

I = RL. (1)
The illumination image L encapsulates the effects of illumination, shading, and shad-
ows. We can further decompose the illumination image into L = βL′, where β repre-
sents the shadow image, defined as a function of the shadow opacity, and L′ represents
the other factors of L. Hence, Eq. (1) can be written as I = βRL′, or more simply,

I = βF, (2)
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3 Interactive removal of shadows from a single image using hierarchical graph cut

as in Wu and Tang30). Here, F represents the shadow-free image. β and F are interde-
pendent, i.e., if we know β, we also know F . Therefore, our problem is the estimation
of β from the input image.

We designed an energy function characterized by four properties:
( 1 ) the likelihood of the color histogram (Dt);
( 2 ) the likelihood of the umbra (Du);
( 3 ) the smoothness of the shadow-free image F (Df ); and
( 4 ) the smoothness of the shadow image β (V b).
The total energy E(β) of all nodes P and edges N are represented as follows:
E(β) =

∑
p∈P

{
λtD

t
p(βp) + λuD

u
p (βp) + λfD

f
p (βp)

}
+

∑
{p,q}∈N

λbV
b
p,q(βp, βq), (3)

where the parameters λt, λu, λf , and λb are the weight factors of the corresponding
cost variables. p and q represent the node indices. The weight of each term in Eq. (3) is
automatically determined by the interactive parameter optimization described in Section
3.

The likelihood cost of the color histogramDt is related to the probability density func-
tion (pdf) of the non-shadow region. Assuming that the likelihood P of the non-shadow
region is the same as the likelihood of the shadow-free image F , the cost function can
be formulated as

Dt
p(βp) = − logP (Ip/βp), p ∈ P, (4)

where I/β represents F . We represent the pdf P as a 1D histogram for each 1D color
channel. We do not estimate all three of the color channels using a 3D pdf, since the
solution space will be too large (e.g., 64 labels for 1D pdf and 64 × 64 × 64 labels for
3D pdf).

Dividing the average intensity of the non-shadow region by the average intensity of
the shadow region yields a good initial estimate for β, which we denote as β0. At the
initial removal stage, we, like Wu and Tang30), use β0 as an initial value for β. The inner
part of the shadow region (the umbra) has a value which is close to β0, while the shadow
boundary (the penumbra) varies from β0 to 1, with 1 representing a non-shadow region.
In order to express the above characteristics, we introduce the following cost function
for Du:

Du
p (βp) = |βp − β0|0.7 + |βp − 1|0.7, p ∈ P. (5)

β0 is a constant value, and is not changed throughout the interactive refinement stage.

L0.7-norm is useful for separating two types of information15), and we also use it here
to decompose the input image into the shadow and shadow-free images.

We also employ a smoothness term for the shadow image β. L1-norm is a good
estimator in order to avoid outliers20); thus we set the smoothness term of the shadow
image β as follows:

V bp,q(βp, βq) = |βp − βq|, {p, q} ∈ N . (6)
Although the smoothness term defined in Eq. (6) can be solved using either the α-
expansion or Ishikawa’s method11), we solve it using a hierarchical graph cut in order to
reduce the computation time.

We also set the smoothness term of the shadow-free image. Our hierarchical graph
cut assumes that the smoothness term is represented by L1-norm, but because F =
I/β, we cannot represent the smoothness term by L1-norm. We therefore calculate the
smoothness term of the shadow-free image as follows and add it to the data term:

Df
p (βp) =

∣∣∣Ip/βp − Ip/βp∣∣∣2 , p ∈ P. (7)

The term Df represents the blurred shadow-free image. The value Ip/βp is the value
Fp = Ip/βp which is blurred befor each iteration: (1) Before starting each iteration, we
blur the shadow-free image calculated in previous iteration; (2) for Df

p (βp), we use the
difference between the shadow-free image calculated from βp and the blurred shadow-
free image calculated in step (1); (3) after applying the graph cut to Eq. (3) for one
iteration, we go back to step (1) if the graph cut is not converged.

2.1 Image segmentation
Region segmentation
The cost functions Dt and Du in Eq. (3) are calculated from the shadow and non-

shadow regions. In order to construct the likelihoods, we have to segment the image into
shadow and non-shadow regions before applying our shadow removal algorithm. Like
previous image segmentation methods16),24), we ask the user to mark each region using
a stroke-based interface, as shown in Fig. 2 (a). After that, we separate the image into
three regions: shadow, non-shadow, and background. The background region is not used
in further calculations. The segmented region shown in Fig. 2 (b) is obtained by using
the α-expansion algorithm. The boundary of the background region should be specified
clearly so that this region would not be updated. However, the boundary between the
shadow region and the non-shadow region does not need to be clearly segmented because
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4 Interactive removal of shadows from a single image using hierarchical graph cut

(a) User input (b) Region segmentation (c) Over-segmentation

Fig. 2 Results of image segmentation. (a) Shadow, non-shadow, and background regions specified by red,
blue, and green strokes drawn by the user. (b) The image segmented into shadow, non-shadow, and
background regions represented as red, blue, and green regions. (c) The image segmented into small
super-pixels.

the software can revise the results.
Over-segmentation
To accelerate the region segmentation stage, we segment the image into small super-

pixels in the over-segmentation stage, as shown in Fig. 2 (c). In this stage, we reduce
the colors of the image by k-means clustering in the RGB color space, and then con-
nect neighboring pixels which have the same color into one small super-pixel. These
super-pixels are also used in the initial removal stage. The boundary of each super-pixel
sometimes produces defects, so we apply our graph cut shadow removal algorithm pixel
by pixel in the interactive removal stage.

3. Interactive parameter optimization

In this section, we explain how to interactively update the weighting parameters λ in-
troduced in Eq. (3). In the initial removal stage, we apply our graph cut shadow removal
algorithm (Section 2) with the default weighting parameters. The default parameters
λt = 10, λu = 1, λf = 0.01, and λb = 1, however, are not always optimal. Therefore,
we use the user input to find a better parameter set.

The main concept of the interactive parameter optimization algorithm is represented
in the following formula.

Λ̂ = argmin
Λ

∑
p∈Ω0

|β̂p − βc|2, s.t . {β̂p|p ∈ Ω0} = graph cut(βp|p ∈ Ω0; Λ), (8)

where Λ ≡ {λt, λu, λf , λb}. The system automatically updates the parameters Λ so
that the shadow image βp of pixel p will be close to the user-specified constant βc. The

constant value βc of pixel p is specified from the starting point of the stroke input by
the user. The area Ω0 to be examined is specified by the user. Here, graph cut is the
function to solve Eq. (3) using the parameters Λ, the current shadow image β, and the
hierarchical graph cut explained in Section 4. By considering the trade-off between the
precision and the computation speed, we limited the iterations of Eq. (8) to 4: We explain
the detailed implementation in Section 3.2. Eq. (8) represents the case for the shadow
image β, and the case for the shadow-free image F is similar. The system increases λt
and λf for smooth textures, and increases λu and λb for constant shadow areas (Fig. 3).
For example, if λf is large, the image will be blurred due to the term Df , which is
effective to remove the shadow when the image contains the scene with constant color.
The discussion about the formulation of Eq. (8) is provided in Section 3.1, and the actual
implementation of it is shown in Section 3.2.

3.1 Objective function
In our implementation, we use Eq. (8) for the interactive parameter optimization. In

this section, we discuss the validity of Eq. (8). In Eq. (8), the term
∑
|β̂p − βc|2 rep-

resents the constraint given by the user stroke. The software tries to make the shadow
opacity β to be close to the value βc specified by the user. The function graph cut
represents the minimization of the cost function, Eq. (3). Consequently, Eq. (8) tries to
minimize both the Eq. (3) and the term

∑
|β̂p−βc|2 in order to obtain the optimal value

for the shadow opacity β and the parameters λt, λu, λf , and λb.
Eq. (8) can be expressed in other form as follows.

Λ̂ = argmin
Λ

U(β̂) ,

{β̂p|p ∈ Ω0} = argmin
{βp|p∈Ω0}

E(Λ, β) , (9)

or more simply,

Λ̂ = argmin
Λ

U(β̂(Λ)) ,

where β̂(Λ) = argmin
β

E(Λ, β) . (10)

Here, E(Λ, β) ≡ E(Λ, {βp|p ∈ Ω0}) represents the cost function, Eq. (3), and U(β̂) ≡
U({β̂p|p ∈ Ω0}) represents the constraint U(β̂) =

∑
p∈Ω0

|β̂p − βc|2 given by the
user. The variable Λ is a global parameter which affects the |Ω0| number of the shadow
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5 Interactive removal of shadows from a single image using hierarchical graph cut

(a) Input (b) Initial (c) 1st (d) 2nd

( ) 3 d (f) 4 h ( ) 5 h (h) 6 h(e) 3rd (f) 4th (g) 5th (h) 6th

Fig. 3 The image enhanced by user-specified strokes. According to the user’s strokes, the algorithm au-
tomatically finds the parameters which reflect the user’s intentions. The strokes are represented by
magenta pixels. In this example, 1–3rd strokes are added to the shadow-free image and 4–6th strokes
are added to the shadow image. (a) is the input image, (b) is the initial state, and (c)–(h) are the results
after the 1–6th strokes.

opacity β̂p, while the variable β̂p is a local parameter set for each pixel. Since the nature
of these parameters are quite different, optimizing them at the same time does not work
stably. In order to solve the problem stably, the algorithm is represented by the nested
loop as Eq. (8), Eq. (9), and Eq. (10). The outer loop minimizes U with respect to Λ,
and the inner loop minimizes E with respect to β. The inner loop minimizes E with the
graph cut; thus, we can use the same source code used in the initial removal stage. The
outer loop does not contain E, namely, the outer loop does not require the graph cut;
thus, the computation time is reduced. The solution to argminΛE is λt = 0, λu = 0,
λf = 0, and λb = 0 (c.f ., Eq. (3)), and these values are not the values that we want.
Note that we want the parameter Λ which satisfies the user requirement, U . The solution
to argminβ U is βp = βc, (c.f ., Eq. (8)), and this value is not the value that we want.

Note that we want the shadow opacity which minimizes the cost function of the shadow
removal problem, E, namely, Eq. (3).

3.2 Detailed implementation
The detailed algorithm of the interactive parameter optimization algorithm is de-

scribed in Fig. 4. The behavior of the algorithm is illustrated in Fig. 5. The first half
of the algorithm is to estimate the parameter Λ (c.f ., line 3–7 in Fig. 4 and Fig. 5 (a)–
(b)). The user specifies some strokes as is shown in Fig. 3, and the system automatically
optimize the parameters which are consistent to the user’s intention. The user can draw
strokes to both the shadow image β and the shadow-free image F ; however, we only
explain the case where the user drew strokes to the shadow image β here. The second
half of the algorithm is to apply the graph cut shadow removal algorithm to other area
using the updated parameters (c.f ., line 8–12 in Fig. 4 and Fig. 5 (b)–(c)). The system
automatically select some regions, and applies the graph cut shadow removal algorithm.

Parameter optimization
The first half of the algorithm is to optimize the parameter Λ under the constraint

specified by the user (Fig. 5 (a)–(b)).
Fig. 4 line 3 The user draws strokes to specify incorrectly removed areas. The region

specified by the user is indicated by Ω0.
Fig. 4 line 4 We represent the shadow opacity of the starting point of the stroke as βc.

The purpose of the process in this section is to estimate the parameter Λ so that the
shadow opacity will be as close as possible to βc.

Fig. 4 line 5 Before applying the graph cut algorithm, we set the initial value of the
shadow opacity. The initial value is set to be βc for the area Ω0 specified by the
user.

Fig. 4 line 6 The algorithm is also applied to a region surrounding the area Ω0 spec-
ified by the user. The region Ω0 is expanded by 4 pixels width. The value “4” is
determined empirically. The shadow opacity of the surrounding area is considered
to be correct while it is not considered to be correct in the user specified area. The
shadow opacity of the surrounding area works as a soft constraint.

Fig. 4 line 7 We apply our method with 4 different parameter sets that are randomly
modified from the current parameters Λ. We compare the results β̂p obtained using
the 4 parameter sets and choose the result which is closest to the starting point βc of
the stroke. In other words, we first randomly make 4 different parameter sets, Λ1,
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6 Interactive removal of shadows from a single image using hierarchical graph cut

Λ2, Λ3, and Λ4, which is slightly different from the current parameters Λ. Next,
we solve the graph cut and obtain the shadow image β̂1p, β̂2p, β̂3p, and β̂4p for the
parameters Λ1, Λ2, Λ3, and Λ4, respectively. Then, we find the minimum among
the following 4 values,

∑
p∈Ω0

|β̂1p−βc|2,
∑
p∈Ω0

|β̂2p−βc|2,
∑
p∈Ω0

|β̂3p−βc|2,
and

∑
p∈Ω0

|β̂4p − βc|2, and choose the parameter set Λ̂ which makes this value
minimum. This process is represented in Eq. (8). The value “4” is determined
empirically by considering the trade-off between the precision and the computation
speed. We do not change the parameters to the steepest descent but change the
parameters randomly in order to limit the number of computing the cost function.
The convergence of the algorithm is slow but it will converge close to the minimum
and slightly oscillate around the minimum. The global minimum of Eq. (8) is the
shadow opacity βc specified by the user; thus, we do not iterate the computation
until convergence, and only evaluate 4 different parameters. We minimize Eq. (8)
for estimating the parameters Λ ≡ {λt, λu, λf , λb}. Detailed discussion is provided
in Section 3.1.

Shadow removal applied to the selected region
After changing the parameters, we also update the shadow of the areas not specified

by the user. It is time consuming if we apply the graph cut shadow removal algorithm to
the whole area P; thus, we limit the size of the region Ω1 to be processed. The second
half of the algorithm is to choose some pixels to be processed, and apply the graph cut
shadow removal algorithm to the chosen pixels using the updated parameter Λ̂.
Fig. 4 line 8 In line 7, the function “graph cut” updates the shadow opacity βp of pixel

p to be β̂p using the parameter set Λ̂. The shadow opacity has drastically changed
if the value |βp − β̂p| is larger than the threshold T0, and it has slightly changed
if the value |βp − β̂p| is smaller than the threshold T0. We randomly choose a
certain pixel p inside the region Ω0, and check whether the difference of the shadow
opacity before applying the graph cut and after applying the graph cut is larger than
the threshold T0. We denote the chosen values βp and β̂p as βa and βb, respectively.
Since we choose a pixel p randomly, βa and βb are expected to be the values of
the shadow opacity before and after the graph cut, which are distributed in wide
area. The threshold T0 is dynamically adjusted so that these values βa and βb can
be found; namely, if we could not find the pixels which satisfy the condition, we

relax the condition by decreasing the threshold T0 so that we can find the pixels
which satisfy the condition. We choose one set of these values; thus, βa and βb are
constant values.

Fig. 4 line 9 If the pixel p has a shadow opacity close to βa, it is likely to become βb if
we apply our graph cut shadow removal algorithm. The shadow opacities of some
pixels outside the user specified region Ω0 are also equal to βa. We denote the set
of pixels whose shadow opacity is close to βa within a threshold T1 as Ω1; namely,
if the difference of the shadow opacity between the pixel p, βp, and βa is less than
the threshold T1, such pixel can be included in the set Ω1. If we apply the graph
cut shadow removal algorithm to the region Ω1, the shadow opacity of some pixels
in Ω1 becomes close to βb. Note that it is not guaranteed that the shadow opacity
of all the pixels in region Ω1 becomes βb: Unless the graph cut shadow removal
algorithm is applied, we do not know what value the shadow opacity will be for the
pixels in region Ω1. It is time consuming if the number of pixels in Ω1, namely
|Ω1|, is too large, and the change through this process is little if |Ω1| is too small.
Therefore, we dynamically change the threshold T1 so that the number of pixels
to be chosen, namely |Ω1|, is limited in a certain range. The range of |Ω1| is set
empirically considering the trade-off between the computation speed and the speed
of the convergence.

Fig. 4 line 10 Before applying the graph cut shadow removal algorithm, the initial
value of the shadow opacity β̂p in region Ω1 is set to be βb. The shadow opac-
ity in region Ω1 is close to βa; thus, setting the initial value as βb is considered to
be effective.

Fig. 4 line 11 We also apply the graph cut shadow removal algorithm to the surround-
ing region of Ω1. The region Ω1 is expanded by 4 pixels width. The value “4” is
determined empirically. The shadow opacity of the surrounding area is considered
to be correct while it is not considered to be correct in the selected area. The shadow
opacity of the surrounding area works as a soft constraint.

Fig. 4 line 12 We apply the function “graph cut” to the region Ω1 using the current
parameter set Λ̂. Note that, the parameter Λ̂ obtained in the first half of the al-
gorithm is used. Also note that the graph cut shadow removal algorithm, namely
graph cut, is applied to the region Ω1 which is not always the same as the user
specified region Ω0.

IPSJ Journal Vol. 1 No. 1 1–14 (Jan. 1960) c© 1960 Information Society of Japan



7 Interactive removal of shadows from a single image using hierarchical graph cut

1: {βp|p ∈ P} ⇐ initial value
2: Λ ≡ {λt, λu, λf , λb} ⇐ initial value
3: Ω0 ⇐ user specified area
4: βc ⇐ user specifiedβ // algorithm for F is also similar
5: {βp|p ∈ Ω0} ⇐ βc
6: Ω0 ⇐ Ω0 ∪ surrounding 4px-width area
7: Λ̂⇐ argminΛ Σp∈Ω0 |β̂p − βc|2

s.t. {β̂p|p ∈ Ω0} ⇐ graph cut(βp|p ∈ Ω0; Λ)
8: {βa, βb} ⇐ {βp, β̂p} s.t. |βp − β̂p| > T0, p ∈ Ω0

// T0 is adjusted if {βa, βb} is not found
9: Ω1 ⇐ {p} s.t. |βp − βa| < T1, p ∈ P

// T1 is adjusted if |Ω1| is too big or too small
10: {β̂p|p ∈ Ω1} ⇐ βb
11: Ω1 ⇐ Ω1 ∪ surrounding 4px-width area
12: {βp|p ∈ Ω1} ⇐ graph cut(β̂p|p ∈ Ω1; Λ̂)
13: Λ⇐ Λ̂
14: if user is still unsatisfied then goto 3

Fig. 4 Interactive parameter optimization.

Summary of the algorithm
To summarize, the parameters Λ are updated (line 7) from the user’s strokes Ω0 (line

3). The output image in the area Ω1 which the user did not specify (Ω1 6= Ω0) is
also improved by the updated parameters Λ̂ (line 12). Since the size of the area to be
computed is smaller than the whole set of pixels (Ω0 ∈ P and Ω1 ∈ P), the system can
display the output image immediately.

4. Hierarchical graph cut

In order to improve the computation speed of the n-label graph cut, we propose a
hierarchical graph cut. The algorithm uses a coarse-to-fine approach to run more quickly
than both the α-expansion method5) and Ishikawa’s method11).

We first explain the benefits of our approach as compared with the previous methods.
A hierarchical approach to region segmentation or image restoration has been previously
studied6)–8),18),21); however, few methods have employed a hierarchical approach which

p p p

c

  ^ ^

a b

0 1

(a) (b) (c)

Fig. 5 A sketch of the interactive parameter optimization. (a) This illustration represents the shadow image
βp. Magenta stroke represents the user specified area. The shadow opacity of the starting point of
the stroke is represented by βc. The area for parameter estimation is represented by Ω0. After the
parameter optimization, the parameters Λ becomes Λ̂, and the shadow opacity βp becomes β̂p. At a
certain point randomly chosen from Ω0, the shadow opacity βa changed to βb. (b) The area where
shadow opacity βp is close to βa is represented by Ω1. (c) This illustration represents the result after
applying graph cut shadow removal algorithm to the area Ω1 with the updated parameters Λ̂.

can be applied to other applications. Juan et al.12) use an initial value before solving
a graph cut to increase the computation speed, but it is only twice as fast as the α-
expansion. A method called LogCut proposed by Lempitsky et al.14) is much faster,
but it requires a training stage before it can be applied. On the other hand, the method
proposed by Komodakis et al.13) does not need any training stages, but the method only
improves the computation time of the second and subsequent iterations, not the first
iteration. We propose a hierarchical graph cut algorithm which is faster than the α-
expansion when applied to a multi-label MRF.

The pseudo-code of the hierarchical graph cut is described in Fig. 7, and that of the α-
expansion is shown for comparison in Fig. 6. In Fig. 6 and Fig. 7, the function “graph”
adds nodes and edges to the current graph g under the rule shown in Fig. 8. For each
iteration, the α-expansion solves the 2-label MRF problem, where one is the current
label and the other is stated as α. Our hierarchical graph cut uses multiple “α”s for each
iteration (line 12 and line 13 in Fig. 7). The list of multiple αs is represented by A in
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8 Interactive removal of shadows from a single image using hierarchical graph cut

line 3, and is defined as:

A0 = {0} , A1 =
{n

2

}
, A2j =

2j−1−1⋃
k=0

{
1 + 4k
2j+1

n

}
, A2j+1 =

2j−1−1⋃
k=0

{
3 + 4k
2j+1

n

}
,

(11)
where j represents the level of the hierarchical structure, and n represents the number
of labels. The interval of each label at level j is 4

2j+1n. For example, the list of labels
for n = 64 will be as follows.

A =
{
{0}, {32}, {16}, {48}, {8, 40}, {24, 56}, {4, 20, 36, 52}, . . .
. . . , {3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63}

}
. (12)

A represents the hierarchical structure since the number of A increases exponentially:
|Ai| = max(1, 2b

i
2 c−1), (13)

where | · | represents the number of items included in the list. For example, the number
of items for n = 64 will be as follows.

{|A0|, |A1|, . . . , |A11|} = {1, 1, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16}. (14)
Note that our algorithm can express all n numbers of the labels:

2 log2 n−1∑
i=0

max
(

1, 2b
i
2 c−1

)
= n. (15)

Our method only requires 2 log2 n times for each iteration (line 5 in the algorithm 7)
thanks to the hierarchical approach, while the α-expansion needs n times for each itera-
tion. Although Ishikawa’s method does not require any iterations, the computation time
is almost the same as for the α-expansion, since the number of nodes for the computation
is n times larger than for the α-expansion.

Recently, Li and Huttenlocher17), and Scharstein and Pal25) took a machine learning
approach in order to model the cost function (especially the smoothness function) which
can represent the good stereo matching as possible. They estimated the parameters of
the smoothness function using the training data of stereo matching results in order to ob-
tain better results. Modeling appropriate smoothness function is important in the stereo
matching problem since the disparity changes discontinuously when there are many oc-
clusions. Our shadow removal software only treats the gradually changing shadow, and
the discontinuous shadow opacity is not assumed. The discontinuity of the shadow
appears if the scene is illuminated by multiple point light sources; thus, we are also in-

terested in further improvement of our method using their methods17),25) to treat with this
problem.

Though our algorithm is faster than α-expansion method5), its quality is slightly lower
than α-expansion method5) and Ishikawa’s method11). However, the results in Section
5.1 indicate that our results are quite similar to the results of α-expansion method and
Ishikawa’s method. Recently, Pock et al.23) proposed a method which produces slightly
better results than Ishikawa’s method when the problem is spatially continuous. Pock’s
work is devoted to the study of the variational problem,

min
u

{∫
Ω

|∇u(x)| dx +
∫

Ω

ρ (u(x),x) dx
}
, (16)

where u is the label represented in MRF framework, Ω is the image domain, x = (x, y)T

is the pixel coordinate, and ρ is the data term. The left term of Eq. (16) is the Total
Variation of the label u, represented as follows.

|∇u(x)| =

√(
∂u(x)
∂x

)2

+
(
∂u(x)
∂y

)2

. (17)

The TV term allows for sharp discontinuities and preserves edges in the solution. There-
fore, the shadow boundary of hard shadow can be improved if we use Pock’s method.
However, we are interested in improving the results of soft shadow rather than hard
shadow in our future work, since our method is more suitable for hard shadow than soft
shadow as is discussed in Section 6.

We believe that improving the cost function (Eq. (3)) would be the most important
future work than improving the graph cut algorithm. Later, in Section 5.1, we show
the hierarchical graph cut results compared to other graph cuts. Section 5.1 shows
that it is difficult to distinguish the difference between our result and other results at
a glance. On the other hand, in Section 5.2, we show that our shadow removal result
is apparently better than other shadow removal result obtained by Finlayson’s method9)

and Wu’s method31). One of the difference between our shadow removal algorithm and
other shadow removal algorithms is that we employ graph cut for optimization, and the
other is that we elaborately defined the cost function of the shadow removal problem.
Since improving the graph cut would give only a small progress in the quality of the
output as shown empirically in Section 5.1, we are directing our attention to improving
the cost function in our future work. Though using better graph cuts like Pock’s method
improves our results, we believe that there is a much room in improving the cost function
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9 Interactive removal of shadows from a single image using hierarchical graph cut

1: B ≡ {βp|p ∈ P} ⇐ initial value
2: n⇐ /* number of labels comes here */
3: A⇐ {0, 1, 2, . . . , n− 1}
4: success⇐ 0
5: for i = 0 to n− 1 do

6: α⇐ Ai
7: g ⇐ null
8: for all p ∈ P do
9: g ⇐ g ∪ graph(α, βp) // see Fig. 8
10: end for
11: for all {p, q} ∈ N do
12: g ⇐ g ∪ graph(α, βp, βq) // see Fig. 8
13: end for
14: B′ ⇐ max-flow(B, g)
15: if E(B′) < E(B) then
16: B ⇐ B′

17: success⇐ 1
18: end if

19: end for
20: if success = 1 then goto 4

Fig. 6 α-expansion.

of the shadow removal problem.
4.1 Graph structure
We construct the graph structure as described in Fig. 8. The edge weight epa, eap, eaq ,

and eqa in Fig. 8 should be a positive number; thus, we truncate the edge weight if the
weight is negative. Now, we discuss how the truncation affects the cost function defined
by the engineer.

Consider the case where V (βp, βq) ≥ V (αp, αq). The smoothness cost when the label
of pixel p is α (i.e., αp) and the label of pixel q is β (i.e., βq) is represented as follows
(Fig. 8):

[V (αp, βq)− V (αp, αq)]
+ + V (αp, αq). (18)

Here, [x]+ = max(0, x) represents the truncation of the negative value. From line 12,

1: B ≡ {βp|p ∈ P} ⇐ initial value
2: n⇐ /* number of labels comes here */
3: A⇐ Eq. (11)
4: success⇐ 0
5: for i = 0 to 2 log2 n− 1 do

6: g ⇐ null
7: for all p ∈ P do
8: αp ⇐ argminα∈Ai

|βp − α|
9: g ⇐ g ∪ graph(αp, βp) // see Fig. 8
10: end for
11: for all {p, q} ∈ N do
12: αp ⇐ argminα∈Ai

|βp − α|
13: αq ⇐ argminα∈Ai

|βq − α|
14: g ⇐ g ∪ graph(αp, αq, βp, βq) // see Fig. 8
15: end for
16: B′ ⇐ max-flow(B, g)
17: if E(B′) < E(B) then
18: B ⇐ B′

19: success⇐ 1
20: end if

21: end for
22: if success = 1 then goto 4

Fig. 7 Hierarchical graph cut.

line 13 in Fig. 7, and Eq. (11), the following inequalities hold.

0 ≤ |αp − βp| ≤
2

2j+1
n, 0 ≤ |αq − βq| ≤

2
2j+1

n. (19)
From V (βp, βq) ≥ V (αp, αq), Eq. (6), Eq. (11), and Eq. (19), we obtain the following
property.

− 2
2j+1

n ≤ V (αp, βq)− V (αp, αq) ≤
2

2j+1
n. (20)

If V (αp, βq)−V (αp, αq) ≥ 0 holds, the truncation does not occur. In this case, Eq. (18)
becomes V (αp, βq)− V (αp, αq) + V (αp, αq); namely, the proper cost V (αp, βq) is set
to the graph; thus, the max-flow computation4) (line 16) can obtain a correct result. On
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10 Interactive removal of shadows from a single image using hierarchical graph cut

the other hand, the proper cost is not set to the graph if V (αp, βq)−V (αp, αq) ≤ 0, and
the maximum error for this term is 2

2j+1n. This error value is the half of the interval of
the αs 4

2j+1n (c.f ., Eq. (11)); meaning that the graph construction shown in Fig. 8 can
solve the problem up to a discretization error. We can also prove the same property for
the cases which are not V (βp, βq) ≥ V (αp, αq).

The above property indicates that the algorithm cannot always estimate the global
optimum of the given cost function. On the other hand, the estimation error is limited
with a small value; thus, the algorithm is expected to produce a solution close to the
global optimum.

5. Experiments

5.1 Hierarchical graph cut
Comparison to other graph cut methods
First, we experimentally validate the performance of the hierarchical graph cut algo-

rithm in three domains: shadow removal, image restoration, and stereo matching. We
used the stereo data sets introduced in25). The results shown in Fig. 9 indicate that our al-
gorithm produces similar results to the α-expansion5) and to Ishikawa’s method11). Table
1 shows that the hierarchical graph cut is 3 to 16 times (or 5 to 8 times) faster than the
α-expansion (or Ishikawa’s method). The change in the value of the cost function at the
first iteration is large, while it is negligible after the second iteration, as shown in Fig. 10.
The disadvantage of the hierarchical graph cut is that the result depends on the initial
value when there are many local minima, as shown in the stereo matching result. Due
to its fast computation speed, we use the hierarchical graph cut in our shadow removal
algorithm instead of the α-expansion and Ishikawa’s method. The detailed discussion
for image restoration and stereo matching is shown in Appendix A.1.

Comparison to gradient descent approach
We also applied the method based on gradient descent to the shadow removal problem.

Fig. 11 (c) is the result of the gradient descent based method. Compared to the result of
our method shown in Fig. 11 (d), the gradient descent based method does not work well
at the shadow boundary. The error difference shown in Table 2 also shows that the image
quality of Fig. 11 (c) is lower than that of Fig. 11 (d). Gradient descent finds a local
minimum which is close to the initial value; while most of the graph cut methods can
find a global minimum. The experiment shown in Table 1 indicates that our hierarchical

Table 1 Computation speed of our H-Cut. The first row specifies the experiments. The second and third
rows show the number of labels used and the image size. The fourth and fifth rows show the ratio
of computation times for X-Cut vs. H-Cut and A-Cut vs. H-Cut. The error differences for H-Cut
minus X-Cut and H-Cut minus A-Cut are shown in the sixth and seventh rows, where a positive
value means that the other methods outperform our method. The number of iterations required until
convergence occurs is shown in the eighth and ninth rows for A-Cut and H-Cut. X-Cut does not need
iterations. The memory size required is shown in the tenth, eleventh, and twelfth rows for X-Cut,
A-Cut, and H-Cut.
[notations] X-Cut: Ishikawa’s exact optimization. A-Cut: α-expansion. H-Cut: Hierarchical graph
cut.

Problem Stereo Stereo Image Shadow
matching 1 matching 2 restoration removal

Labels 128 128 256 64
Image size 543× 434 480× 397 256× 256 640× 480
Speed-up vs. X-Cut ×5.2 ×5.9 ×8.0 ×6.4

vs. A-Cut ×6.8 ×11.4 ×16.6 ×3.4
Error vs. X-Cut +5.0% +3.2% +0.6% +0.0%
difference vs. A-Cut +4.6% +3.0% −0.4% +0.0%
Iteration A-Cut 8 7 10 4

H-Cut 10 5 7 6
Allocated X-Cut 6, 748 MB 5, 537 MB 5, 306 MB 4, 538 MB
memory A-Cut 106 MB 111 MB 65 MB 482 MB

H-Cut 106 MB 120 MB 64 MB 482 MB

graph cut (c.f . H-Cut) can produce the result close to the global minimum (c.f . X-Cut).
Therefore, our method removes the shadow at the boundary in higher quality than the
method based on gradient descent.

5.2 Shadow removal
Natural image
Our shadow removal results are shown in Fig. 12–14. The number of user interactions

required for parameter optimization is listed in Table 3. The system displays the output
image at the responsive speed. The shadows were removed effectively while the com-
plex textures of the images were preserved. We express the shadow opacity using 64
discrete values, but these results show that this discretization does not cause any strong
defects. Fig. 12 (a) did not require the stroke for the interactive parameter optimization,
since the default parameters successfully removed the shadows. The shadows of the
cracks in Fig. 13 (a) and the statue in Fig. 13 (c) are not removed since the user did not
specify these shadows to be removed. The leg of the bird in Fig. 13 (d) is disappeared
since the brightnesses of the shadow and the leg are similar, and this is always a problem
for most of the shadow removal softwares. If the shadows are complex (Fig. 14 (c) and
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11 Interactive removal of shadows from a single imageusing hierarchical graph cut

Table 2 Computation speed of our method and the gradient descent approach. The first and second rows
show the number of labels used and the image size. The third row shows the ratio of computation
times for the gradient descent method vs. our hierarchical graph cut method. The error difference
for our method minus the gradient descent method is shown in the fourth row, which indicates that
our method is better than the gradient descent method. The number of iterations required until
convergence occurs is shown in the fifth and sixth rows for our method and the gradient descent
method. The memory size required is shown in the seventh and eighth rows for our method and the
gradient descent method.

Labels 64
Image size 640× 480
Speed-up ×1.8
Error difference −3.4%
Iteration Gradient descent 19

Hierarchical graph cut 6
Allocated Gradient descent 485 MB
memory Hierarchical graph cut 482 MB

Table 3 Computation time for our shadow removal. The first column gives the images from Fig. 12–14.
The second column shows the size of each image. The third column shows the number of user
interactions used for parameter optimization. The fourth column shows the computation time for
each user interaction, using 3 GHz desktop computer.

Image Image size Strokes† Average time per stroke

Fig. 12 (a) grass 640× 480 [px] N/A N/A
Fig. 12 (b) family 640× 480 [px] 1 1.4 [sec]
Fig. 12 (c) standing 320× 240 [px] 4 1.2 [sec]
Fig. 12 (d) horse 640× 480 [px] 6 2.1 [sec]
Fig. 13 (a) rock 640× 480 [px] 8 1.5 [sec]
Fig. 13 (b) women 640× 480 [px] 12 2.0 [sec]
Fig. 13 (c) statue 320× 240 [px] 15 1.9 [sec]
Fig. 13 (d) bird 320× 240 [px] 2 1.5 [sec]
Fig. 14 (a) walking 640× 480 [px] 26 2.0 [sec]
Fig. 14 (b) cat 640× 480 [px] 27 5.8 [sec]
Fig. 14 (c) glass 640× 360 [px] 32 6.3 [sec]
Fig. 14 (d) wine 640× 320 [px] 40 2.8 [sec]

† = Number of strokes for parameter optimization

Fig. 14 (d)), the user has to add many strokes to extract them.
Aerial images
In aerial images, the shadows of buildings fall both on the ground and on neighboring

buildings. Neighboring aerial images are often taken at different times, so that when
they are stitched together, there may be a seam where the different images meet. Thus,

it is important to remove the shadows in the aerial images. After many strokes are added
to this complex scene, we finally obtain the images which are shown in Fig. 15.

Evaluation
In Fig. 16, we show how our method benefits from the user interaction. The results are

evaluated quantitatively using the ground truth. Our results improve gradually when the
user interacts with the system. The computation times for the results shown in Fig. 16
(a) using a 3 GHz desktop computer are 21 [sec], 336 [sec], and 65 [sec] for the main
part of the algorithm for Finlayson’s method9), Wu’s method31), and our method until
convergence, respectively; while the computation times for Fig. 16 (b) are 8 [sec], 649
[sec], and 53 [sec].

6. Conclusions and discussions

We present a method for user-assisted shadow removal from a single image. We have
expressed the shadow opacity with a multi-label MRF and solved it using a hierarchical
graph cut. Our hierarchical graph cut algorithm allows the system to run at interactive
speeds. The weighting parameters for each cost term are automatically updated using an
intuitive user interface.

Using user-supplied hints, the coefficients of each cost term are adjusted, and the
method can be applied to both hard shadows and soft shadows. We set the default coef-
ficients so that it can successfully remove the hard shadow. Since the best coefficients for
soft shadow is difficult to find, we require the users to interact to the system. Automatic
shadow removal which works well with soft shadow is our future work.

The hierarchical graph cut solves multi-label MRF problems 3 to 16 times faster than
α-expansion5) and Ishikawa’s graph cut11). However, the precision of this graph cut
method is often slightly worse than α-expansion. It often falls into local minimum;
thus, a good initial value is necessary. Considering both the computation speed and the
robustness is a hard task, and we leave it as an open problem.

Another limitation is that the method requires the labels to have a numerical order. It
cannot be used, for example, to segment image pixels into the foreground or background.
However, fast solutions already exist for such foreground/background cut problems.
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Appendix

A.1 Image restoration and stereo matching
The main topic of this paper is the shadow removal; thus, we examine the experiments

shown in Fig. 9 and Table 1 in the appendix.
The initial value of image restoration is the input image itself. The data term is defined

as follows.
Dp(βp) = min(t1, |βp − Ip|), (21)

where t1 is a constant value, and Ip is the pixel brightness of the input image. The
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Table 4 Middlebury stereo evaluation26), where error threshold is 1. Tsukuba, Venus, Teddy, and Cones
are the names of input image pair. The smaller the numerical value is, the better the algorithm’s
performance is. “Avg. rank” represents the overall performance of the algorithm. “H-Cut” rep-
resents the proposed method. “SSD+MF [1a],” “DP [1b],” “SO [1c],” and “GC [1d]” represent
the stereo matching algorithms which use “SSD + min-filter,” “Dynamic programming,” “Scanline
optimization,” and “Graph cuts using alpha-beta swaps,” respectively27).

Algorithm Avg. rank Tsukuba Venus Teddy Cones
GC [1d] 57.5 1.94 1.79 16.5 7.70
H-Cut 59.4 2.85 1.73 10.7 5.46
DP [1b] 65.1 4.12 10.1 14.0 10.5
SSD+MF [1a] 69.0 5.23 3.74 16.5 10.6
SO [1c] 70.7 5.08 9.44 19.9 13.0

smoothness cost is as follows.
Vp,q(βp, βq) = t2 exp(−|∇Ip|/t3)|βp − βq|, (22)

where t2 and t3 are constant values, and ∇Ip represents the edge strength which is
calculated by Sobel operator.

The initial value of stereo matching is the result of conventional stereo which uses
shiftable window27). The data term is defined as follows.

Dp(βp) = min(t4, s(βp)), (23)
where t4 is a constant value, and s(βp) is the SAD (sum of absolute difference) between
the stereo image pair calculated by shiftable window whose size is 5×5. The smoothness
cost is as follows.

Vp,q(βp, βq) =
(
t5 exp(−|∇Ip|2/t6) + t7

)
|βp − βq|, (24)

where t5, t6, and t7 are constant values, and ∇Ip represents the edge strength which is
calculated by Sobel operator. The subpixel refinement and the occlusion detection are
not implemented in our current software.

We have compared our stereo matching result with other methods26). The results are
shown in Table 4. As expected, our result is worse than conventional graph cut stereo,
but is better than DP (dynamic programming) stereo and other conventional stereos. The
comparison with state-of-art stereo algorithms can be found in the Middlebury stereo
webpage26).
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epa, eap V (αp, βp)
eaq , eqa V (αq, βq)
eβa V (βp, βq) {p, q} ∈ N , αp 6= αq
eaα V (αp, αq)

eap, eaq ∞ {p, q} ∈ N , αp 6= αq ,
epa [V (αp, βq)− V (βp, βq)]+ V (βp, βq) ≤ V (αp, αq)
eqa [V (βp, αq)− V (βp, βq)]+

epa, eqa ∞ {p, q} ∈ N , αp 6= αq ,
eaq [V (αp, βq)− V (αp, αq)]+ V (βp, βq) ≥ V (αp, αq)
eap [V (βp, αq)− V (αp, αq)]+

Fig. 8 Graph construction for our graph cut. [x]+ = max(0, x). The nodes p and q are the neighboring
nodes, which also represents the pixel position. The node a is the auxiliary node added in order
to set the weights properly. The nodes α and β are the sink and source nodes, respectively, which
also represent the labels used temporarily in the graph cut algorithm and the label to be estimated,
respectively. P and N are the pixel set and the set of the couples of the neighboring pixels. e
represents the edge weight between two nodes of the graph. V andD are the smoothness and the data
term, respectively.
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Stereo matching 2

Stereo matching 1

Image restoration

Shadow removal

(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)
Fig. 9 Results of our hierarchical graph cut. (a), (b), (c), (d), and (e) show the input, the ground truth, the

result for Ishikawa’s method, the result for α-expansion, and the result for the hierarchical graph cut,
respectively.

Hierarchical graph cut α-expansion Ishikawa's method
1.1×107 1.7×106

Energy Energy

g p p

1.5×106

gy Energy

7Iteration number2500
Computation time [sec]

(a) (b)
Iteration numberCo putat o t e [sec]

Fig. 10 The plot of the value of overall cost of experiment “stereo matching 2” vs. the time (a) or iteration
(b). The initial value of the cost is the cost of conventional stereo.

Whole image

Partially magnified

(a) (b) (c) (d)

Fig. 11 The shadow removal result of our method and the gradient descent approach. (a), (b), (c), and
(d) show the input, the ground truth, the result for gradient descent method, and the result for the
hierarchical graph cut, respectively.
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(a)

(b)

(c)(c)

(d)(d)

Fig. 12 Our shadow removal results. The first and fourth columns show the input images, the second and fifth
columns show the shadow-free images, and the third and sixth columns show the shadow images.

(a)

(b)

(c)(c)

(d)(d)

Fig. 13 Our shadow removal results. The first and fourth columns show the input images, the second and fifth
columns show the shadow-free images, and the third and sixth columns show the shadow images.
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(a)

(b)

(c)

(d)

Fig. 14 Our shadow removal results. The first and fourth columns show the input images, the second and fifth
columns show the shadow-free images, and the third and sixth columns show the shadow images.

Input Result
Fig. 15 Application to aerial images. The input image and the shadow-free image are shown.
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Fig. 16 Comparison between our method, Finlayson’s method, and Wu’s method, when applied to indoor

scene (a) and outdoor scene (b). The root mean square error (RMSE) is calculated by comparison
with the ground truth. The solid line represents our results and the dashed lines represent Finlayson’s
results and Wu’s results.
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