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Abstract
This paper presents a method to estimate geometrical,

photometrical, and environmental information of a single-
viewed object in one integrated framework under fixed view-
ing position and fixed illumination direction. These three
types of information are important to render a photorealis-
tic image of a real object. Photometrical information rep-
resents the texture and the surface roughness of an object,
while geometrical and environmental information represent
the 3D shape of an object and the illumination distribution,
respectively. The proposed method estimates the 3D shape
by computing the surface normal from polarization data,
calculates the texture of the object from the diffuse only re-
flection component, determines the illumination directions
from the position of the brightest intensity in the specu-
lar reflection component, and finally computes the surface
roughness of the object by using the estimated illumination
distribution.

1. Introduction

It is well known that to successfully render a photoreal-
istic image of a real object, one should have the information
of object’s physical information and its environment. Prin-
cipally, three major types of information are requisite, i.e.,
geometrical, photometrical, and environmental information.
Photometrical information provides the surface reflectance
parameters (= texture and surface roughness) of an object,
while geometrical and environmental information provides
the 3D shape of an object and the illumination distribution,
respectively.

Rendering this three types of information under less con-
straints are called inverse rendering. Sato et al. [1] and
Tominaga et al. [2] estimated shape, texture, and surface
roughness. Zheng et al. [3], Nayar et al. [4], and Kim et
al. [5] estimated shape, texture, and illumination distribu-
tion. Ikeuchi et al. [6], Sato et al. [7], Ramamoorthi et
al. [8], Nishino et al. [9], and Hara et al. [10, 11] estimated
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texture, surface roughness, and illumination distribution.
In this paper, we propose a novel method to obtain shape,

texture, surface roughness, and illumination distribution
from a single view in one integrated framework, with dif-
ferent approach from Rahmann’s method [12]. The three-
dimensional shape of the target object is obtained by com-
puting the surface normal from polarization data. The tex-
ture is calculated from the diffuse only reflection compo-
nent, after separating the reflection components of the im-
ages based on color. The illumination directions are de-
termined from the position of the brightest intensity in the
specular component. Finally, the surface roughness of the
object is computed by using the estimated illumination dis-
tribution.

The rest of this paper is organized as follows: Section 2
shows a method to obtaining the surface shape of the object.
Section 3 shows the method to estimate the texture, surface
roughness, and illumination direction. Section 4 shows the
implemented algorithm. Section 5 shows the measurement
results and Section 6 concludes this paper.

2. Modeling geometric information

Three-dimensional shape of the object is computed from
images taken by a polarizer-mounted camera. We apply a
method described in Section 2.1 to separate the reflection
components before analyzing the polarization state of the
input images. Section 2.2 describes a technique to compute
the surface normal of the object by analyzing the polariza-
tion data of the diffuse reflection component. Surface height
is estimated from the distribution of the surface normal by
using a relaxation method [13,14].

2.1. Separating diffuse and specular components

Most inhomogeneous surfaces follow the dichromatic re-
flection model. According to this model, the intensity of the
light reflected from an object surface is a linear combination
of the diffuse and the specular reflection components [15].
In our parameters estimation method, we need to separate
the input image into two component images, namely, spec-
ular component image and diffuse component image.

Many methods have been proposed to separate the image
into each components based on the color analysis. In our



method, Tan’s method [16] is used for its robustness. This
method requires illumination chromaticity normalization,
so that the illumination chromaticity needs to be known
beforehand; we can use either white reference or color
constancy algorithm to obtain the illumination chromatic-
ity [17]. The normalization is done simply by dividing the
image intensity using known illumination chromaticity: �I �
�IR�ir IG�ig IB�ib�T , where I � �IR IG IB �T is the
image intensity in each color channel, and i � �ir ig ib�T

is the illumination chromaticity. In this paper, we assume
that all light sources have the same color throughout the
surface.

2.2. Polarization

Shape-from-polarization [18–23] estimate the surface
normal of an object from a single view illuminated by in-
coherent light sources, even without knowing any illumina-
tion information such as intensity, color, shape, and direc-
tion. The polarization state of diffuse light as well as spec-
ular light depends on the surface normal of the object, thus,
by analyzing the polarization state of diffuse light, we can
obtain the information about the shape of the object. By ob-
serving the light by a linear-polarizer-mounted camera, we
can obtain the polarization state of the light. The light inten-
sity will vary when the polarizer is rotated. This intensity
difference forms a sinusoidal curve with respect to the angle
of the rotation of the polarizer. We denote the maximum in-
tensity of such sinusoidal curve as Imax and the minumum
one as Imin.

Surface normal can be represented as polar coordinate
system ��� �� where � is zenith angle and � is azimuth
angle(�� � � � ���� �� � � � �	��). Here, we set
the camera at � � ��. Zenith angle is the angle between
the viewing direction and the surface normal, and azimuth
angle is the orientation of the plane consisted of viewing
direction and the surface normal.

The angle of the polarizer where we observe Imax will
be the azimuth angle [18–23]. Since the linear polarizer
has a cycle of 
���, we obtain two azimuth angles in the
domain �� � � � �	��. One of those angles will equal
to the true azimuth angle of the surface normal, while the
other will face to the opposite direction. We assume the ob-
ject to be a closed, geometrically smooth object, thus, we
can determine the surface normal at the occluding bound-
ary. By propagating the determination of � from the oc-
cluding boundary to the inside part of the object region, we
can solve this �-ambiguity easily.

Zenith angle can be determined by DOP(degree of po-
larization). DOP represents how much the light has been
polarized. DOP is 1 for perfectly polarized light, 0 for un-
polarized light, and it varies between 0 to 1. The definition
of DOP is:

� �
Imax � Imin

Imax � Imin

(1)

Figure 1. DOP(degree of polarization) of dif-
fuse light (n � 
�
)

DOP is related to zenith angle by following Equation
[18,19]:

� �
�n� 
�n�� sin� �

� � �n� � �n� 
�n�� sin� � � � cos �
p
n� � sin� �

(2)
where � is the DOP of diffuse light, � is the zenith an-
gle, and n is the refractive index of the object to that of the
air. Figure 1 represents this function. This function indi-
cates that we can calculate the zenith angle by measuring
the DOP of diffuse light. However, the function represents
the DOP of an optically smooth surface. DOP of rough sur-
face is smaller than that of smooth surface. Moreover, we
have to know the refractive index. One solution to this prob-
lem is described in Section 4.3.

3. Modeling photometrical and environmental
information

3.1. Estimating illumination direction

The direction of the light source can be represented as
a polar coordinate system, since we do not intend to esti-
mate the distance between the light source and the object,
assuming that the light sources are sufficiently far from the
object. Also, we assume that each light sources have the
same radiant power. We first detect the brightest intensity
of the specular component image. Then, from the surface
normal ��� �� of the detected point, we determine the di-
rection of the light source as ���� �� since we defined the
camera direction as � � ��. If there are many candidates of
the direction of the light source, we manually choose what
is considered to be correct.

3.2. Estimating reflection parameters

In this paper, we use simplified and discretized Torrance-
Sparrow model [15] for the reflection model:

I � Id � Is (3)



Figure 2. Geometrical location of surface nor-
mal, illumination direction, and viewing direc-
tion

Id � Kd

LX
l��

cos �i (4)

Is �
Ks

cos �r

LX
l��

exp

�
�

��

�	�

�
(5)

where I is the observed intensity, Id is the diffuse reflec-
tion intensity, Is is the specular reflection intensity, Kd is
the diffuse reflection scale, �i is the angle between the inci-
dent light and the surface normal,Ks is the specular reflec-
tion scale, �r is the angle between the surface normal and
the viewing direction, � is the angle between the surface
normal and the bisector of incident light direction and the
viewing direction, 	 is the surface roughness paramter, L is
a number of light sources, and l � f
� ���� Lg is a set of light
sources(Figure 2).

Extracting illumination intensity from reflection scale (=
Kd andKs) is an ill-posed problem in our framework, thus,
we only estimate the reflection scale. For reflection param-
eters estimation, we assume that the Fresnel coefficient and
the geometrical attenuation factor are constant. In this pa-
per we use RGB color camera, thus, I, Id, Is, Kd, and Ks

are 3-dimensional vectors.
We obtain I from the camera, Id and Is from the sep-

arated reflection components, �i, �r , and � from surface
normal and illumination direction, and l � f
� ���� Lg from
the procedure described in Section 3.1. Then, the remain-
ing unknown parameter we intend to estimate are the dif-
fuse reflectance Kd, the specular reflectance Ks, and sur-
face roughness 	.

Diffuse reflectance is sometimes called a texture. By
using surface normal and illumination distribution, we can
calculate the diffuse reflectanceKd by Equation (4). We as-
sume that all of surface points have the sameKs and 	. Ks

and 	 can be estimated with non-linear least square method
by minimizing the squared difference between the lefthand
side and righthand side of Equation (5).

4. Implementation

4.1. Specular Free Image

Tan et al. [16] introduced a specular-free image in their
method to separate an input image into diffuse compo-
nent image and specular component image. Specular-free
image is an image that is free from highlights but has
different surface color from the input image. To pro-
duce the specular-free image, they proposed a two dimen-
sional space, max.chromaticity-intensity space. In fact, the
specular-free image can be also calculated by using other
spaces such us a color space called S space defined by Ba-
jcsy et al. [24]. In this paper, we use the following color
space similar to S space:

y � Ax (6)

A �

�
� 
 ��

�
��

�

�
p
�

�
�
p
�

�
�

�

�

�

�

�

�
A (7)

y � �m��m��m��
T � x � �r� g� b�T (8)

where x denotes the color in RGB space and y denotes
the color in our proposed color space. Hue, saturation, and
intensity can be defined as follows by using the parameters
of �m��m��m�� space:

Hue � arctan
m�

m�

(9)

Saturation �
q
m�

�
�m�

�
(10)

Intensity � m� (11)

For the normalized image (= image that has pure-white
specular component), we can easily obtain the specular-free
image by substituting the saturation into the intensity:

�msf

�
�msf

�
�msf

�
�� �m��m�� a

q
m�

�
�m�

�
� (12)

where a is an arbitrary value and �msf
�
�msf

�
�msf

�
� represents

the specular free image.
Under the definition of hue, saturation, and intensity pre-

sented in this paper, this specular-free image will have the
same hue and saturation but different intensity to the actual
diffuse component image. However, the image is useful,
since calculating the polarization data can be done from it.
Unlike diffuse component image which is in certain circum-
stances more difficult to obtain, the specular-free image is
obtainable using one-pixel-based operation and almost real
time.

Note that DOP is defined only by the ratio of the intensity
(Equation (1)) not the absolute value of the intensity, thus,
the DOP calculated from specular-free image will be just
the same as that calculated from diffuse component image.

4.2. Unpolarized World Assumption

Polarization data is sometimes affected by surrounding
ambient light. To cancel out this interference, we propose



an algorithm called Unpolarized-World algorithm by using
unpolarized-world assumption. By assuming the reflected
light as an unpolarized light, Unpolarized-World algorithm
easily estimates the amibient polarized light caused by sur-
rounding objects. Note that we observe only diffuse reflec-
tion for calculating polarization data. DOP is very low for
diffuse reflection and is much lower for a rough surface,
thus, the observed diffuse light is almost unpolarized.

Polarization state of any light can be expressed by Stokes
vector [25]. Original Stokes vector is a 4D vector, how-
ever, we do not consider any circular polarization, thus, we
can represent the light by 3D vector ignoring the fourth pa-
rameter of Stokes vector. Our Unpolarized-World algorithm
modifies the input Stokes vector as:

�I � I� s (13)

where I, s, and �I is 3D Stokes vector, and represent the
input light, ambient light, and modified light, respectively.
I and s are represented as:

I �

�
� 
 � �

� cos �� � sin ��
� sin �� cos ��

�
A
�
� Imax � Imin

Imax � Imin

�

�
A (14)

s � 


�
� 
 � �

� cos �� � sin ��
� sin �� cos ��

�
A
�
� 




�

�
A (15)

where 
 denotes the intensity of ambient light, and � is the
polarization angle of ambient light. Thus, by substituting
Equation (14) and (15) into Equation (13), we obtain:

�I �

�
� Imax � Imin � 


�Imax � Imin� cos ��� 
 cos ��
�Imax � Imin� sin ��� 
 sin ��

�
A (16)

I is the input light, which is affected by ambient perfectly
polarized light. We intend to obtain an unpolarized light �I
by adding a perfectly polarized light s to input light I. Thus,
the purpose is to estimate 
 and � to make the modified
light�I into an unpolarized light �Imax � Imin � 
��
 � ��T .

 and � can be determined by solving the least square prob-
lem. � can be determined as:

� �



�
arctan

P
w�Imax � Imin� sin ��P
w�Imax � Imin� cos ��

(17)

and 
 can be determined as one of the two equations below:


 � �

P
w�Imax � Imin� cos ��

cos ��
P

w
(18)


 � �

P
w�Imax � Imin� sin ��

sin ��
P

w
(19)

where w is a weighting function. In this paper, we use
w � 
 � �. If DOP � is small, then weight w is set to be
large, meaning that if the light is almost unpolarized, then
the weighting factor is set to be large.

DOP �� and phase angle �� can be calculated by the esti-
mated parameters 
 and � as [25]:

�� �

p
�Imax � Imin�� � �
�Imax � Imin� cos ���� �� � 
�

Imax � Imin � 


(20)

�� �



�
arctan

�Imax � Imin� sin ��� 
 sin ��

�Imax � Imin� cos ��� 
 cos ��
(21)

4.3. Histogram Modification

DOP depends on refractive index (Equation (2)). In ad-
dition, Equation (2) is derived by assuming the surface as
an optically smooth surface. Rough surface causes depolar-
ization and lowers the obtained DOP. Thus, the calculated
zenith angle � from Equation (2) by giving arbitrary refrac-
tive index will be different from the true value; we have to
modify the calculated zenith angle � to better represent the
true zenith angle.

Estimating all these three unknown parameters (= zenith
angle, refractive index, and surface roughness) is an ill-
posed problem for a single polarization image. We took
a statistical approach for modifying the zenith angle. As-
sume that we know the histogram of zenith angle calculated
all over the surface. Then, by deforming the histogram of
obtained zenith angle to the expected histogram, the zenith
angle will represent the true value. In this paper, we simply
used the histogram of hemisphere for the true histogram.

Histogram of hemisphere will be �N sin � ��� � � �
����, where N is the number of surface points. The zenith
angle can be modified as follows. First, we sort all the
surface points in ascent order with respect to zenith angle.
Then, calculate arcsin

p
i�N for the zenith angle of the ith

point of the sorted list.

5. Measurement results

First, we analyzed the accuracy of the polarization data
by measuring a specular green hemisphere. For anlyzing
the accuracy of this object, we did not apply any smoothing
operations to the obtained data, however, the modification
method described in Section 4.2 and 4.3 is applied to the
obtained data. The average error of surface normal was 
��

for this green hemisphere; the average error is calculated by
the average of the angle between the estimated surface nor-
mal and the true surface normal. According to this result,
the input data seem to be less accurate, thus, for the subse-
quent measurements, we properly smoothed the input data
to obtain a better estimation.

Next, we measure a yellow pear object shown in Figure
3(a). By the color-based separation, we separated the input
image into specular and diffuse component images. From
the polarizer-mounted camera, we obtained the DOP data
and � data from the specular-free image. Then, we calcu-
lated the surface normal of the object and integrated them
into the height of the object(Figure 3(b)).



Figure 3. Result of pear: (a) True image,
(b) Surface mesh, (c) Synthesized image, (d)
Rendered from a novel view under different
illumination

Figure 4. Illumination of pear: (a) Estimated
illumination, (b) True illumination

By detecting the brightest intensity in specular compo-
nent image, we determined the direction of light sources,
which is depicted in Figure 4(a). For comparison, the true
illumination distribution is shown in Figure 4(b). Estimated
texture Kd was (66, 37, 15). For the measurement results
of the pear, we assumed that Kd is the same for all surface
points. We estimated the reflection parameters, and resulted
surface roughness 	 and specular scale Ks was 0.17 and
22, respectively. Note that we normalized the input images
to make the specular reflection component become white,
thus, all three elements ofKs have the same value.

Rendered examples are shown in Figure 3(c) and (d).
Figure 3(c) is rendered under the estimated parameters and
illumination, which should be the same as Figure 3(a). Fig-
ure 3(d) is an another example which is rendered under the
different object direction and the different illumination po-
sition.

Figure 5(a) is a real image of pink dinosaur object to
measure. Estimated shape is depicted in Figure 5(b) and

(a) (b) (c)

Figure 5. (a) Real image of dinosaur: Illumi-
nation distribution is estimated by analyzing
the white region, (b)(c) Estimated shape of
dinosaur.

Figure 6. Illumination of dinosaur: (a) Esti-
mated illumination, (b) True illumination

(c). Figure 6(a) is the estimated illumination and Figure
6(b) is the ground truth. We only used the area bounded by
white box in Figure 5(a) to estimate the illumination dis-
tribution. This area is smoothed enough to obtain a better
estimation. Error for illumination direction was �
�, ����,
and 
�� for northwest light source, northeast light source,
and south light source, respectively (Here, “north” is repre-
sented as the upper direction in Figure 6). Estimated surface
roughtness 	 and specular scale Ks was 0.071 and 93, re-
spectively. Estimated diffuse scale Kd is shown in Figure
7(a). Figure 7(b) is rendered under the estimated parame-
ters and illumination, which should be the same as Figure
5(a). Figure 7(c) is an another example which is rendered
under the different object direction and the different illumi-
nation position. Appearance difference between these ren-
dered images and the real image tells us that the specular
factors, Ks and 	, seem to be overestimated. To improve
the accuracy of the estimation method lies for our future
work.



Figure 7. (a) Diffuse reflection scale Kd, (b)
Rendered image, (c) Rendered under different
viewpoint

6. Conclusion

We have introduced a method to estimate shape, texture,
surface roughness, and illumination distribution from a sin-
gle view in one integrated framework. Our method esti-
mates the direction of multiple light sources, without re-
quiring any special light sources such as laser beam nor
structured pattern light. One of our main contributions is
the improvement of the shape-from-polarization technique.
We successfully obtained the shape of the object from a sin-
gle view by analyzing the polarization effect of the light,
and demonstrated the ability of our method to determine the
shape of objects using real images. We also estimated the
reflection parameters and illumination distribution to con-
firm that the estimated shape is enough precise to be applied
to another process.
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