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Abstract

In this paper, we propose a novel method to recover the
surface shape of transparent objects. The degree of polar-
ization of the light reflected from the object surface depends
on the reflection angle which, in turn, depends on the ob-
Ject’s surface normal; thus, by measuring the degree of po-
larization, we are able to calculate the surface normal of the
object. However; degree of polarization and surface normal
does not correspond one-to-one, making us to analyze two
polarization images taken from two different view in order
to solve the ambiguity. A parabolic curve will be a strong
clue to correspond a point in one image to a point in the
other image, where both points represent the same point on
object surface. By comparing the degree of polarization at
such corresponding points, the true surface normal can be
determined.

1. Introduction

In the field of computer vision, various methods have
been developed to deal with opaque object. However, few
methods focus on transparent object. Environment mat-
ting [1, 2] is developed to synthesize a realistic image of
transparent object without using any information about the
3D shape of the object. Schechner et al. [3] and Szeliski et
al. [4] separated the overlapped image of glass plates into
two images; one is the reflected image, while the other is
the transmitted image. Murase [5] proposed a method to
determine the surface shape of water wave by analyzing
the image placed in the bottom of the water, which causes
the image to be deformed due to refraction and undulation.
Hata et al. [6] projected a light stripe onto transparent ob-
jects and recovered the surface shape of transparent objects
by applying a genetic algorithm.

Shape-from-polarization is known to be effective to esti-
mate the shape of specular objects such as metals or trans-
parent objects. Koshikawa et al. [7, 8] analyzed the polar-
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ization of specular objects to retrieve, from the database, a
3D model of an object which matches the observed object.
Wolff et al. [9,10] attempted to determine the surface shape
of objects by using a combined method of polarization anal-
ysis and binocular stereo; however, they did not propose a
method to search the corresponding points of two images;
thus, they measured only the orientation of the glass plane
and the metal plane. Saito et al. [11] tried to measure the
surface shape of transparent objects; unfortunately, there
was an ambiguity problem for determining the true surface
normal, and they simply heuristically solved the ambigu-
ity. Miyazaki et al. [12] extended Saito’s method and solved
the ambiguity problem from a polarization analysis of ther-
mal radiation, and determined the surface shape of trans-
parent objects. Rahmann et al. [13] proposed an optimiza-
tion method, and measured the surface shape of an opaque
specular sphere by using polarization images taken from 5
directions. Recently, Miyazaki et al. [14] also proposed a
method to estimate the surface shape of an opaque specular
object from a polarization image from a single view.

In this paper, we propose a method to determine the sur-
face shape of transparent objects by using a polarization
phenomena of reflected light. We solve the ambiguity prob-
lem of surface normal in Saito et al.’s method by rotating
the object at a small angle, and also solve the correspond-
ing problem of binocular stereo in Wolff et al.’s method by
using the geometrical property of the object surface. We
do not require camera calibration, so we do not need to
know the position of a projector as in Hata et al.’s method.
Moreover, we do not need to know the rotation angle for
stereo as in Rahmann et al.’s method. We use parabolic
curves [15-17], curves whose Gaussian curvature are 0, for
searching the corresponding points.

Section 2 explains about the polarization analysis, espe-
cially, describing the ambiguity problem of surface normal.
The relationship between the degree of polarization and the
reflection angle is not one-to-one, so that one cannot deter-
mine the true surface normal unless one solves this ambigu-
ity problem.

In Section 3, we describe the method to solve the am-
bigutiy problem. The disambiguation is done by introduc-
ing a binocular stereo method, practically, we rotate the ob-
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Figure 1. Location of acquisition system

ject at a small angle instead of setting two cameras. We
compare two polarization images taken from two different
directions: one polarization image is taken before the object
is rotated and the other polarization image is taken after the
object is rotated at a small angle. The degree of polarization
is compared at a pair of points which correspond to an iden-
tical point on the object surface. The corresponding method
is explained by using a Gaussian sphere.

We present an experimental result in Section 4, and sug-
gest topics for our future work in Section 5.

2. DOP and reflection angle

In this section, we describe the relationship between the
degree of polarization (DOP) and the reflection angle. For
details, please refer to [9-12, 18].

Geometrical location of the acquisition system is shown
in figure 1. We locate the polarizer-mounted camera over
the target object, and illuminate the object with unpolarized
light traveling through the air, whose refractive index is 1.0.
Unpolarized light will become partially polarized if the light
reflects from the object surface, whose refractive index is n.
We observe such reflected light by the polarizer-mounted
camera. Note that, in our analysis, we use an orthographic
projection assumption.

The angle between the light source direction and the sur-
face normal is called the incident angle, and the angle be-
tween the surface normal and the camera direction is called
the reflection angle. The incident angle is equal to the re-
flection angle for optically smooth transparent objects. The
plane consisting of the surface normal and the camera direc-
tion is called the reflection plane. Consider projecting the
reflection plane onto the image plane: the reflection plane
appears to be a straight line on the image plane, and the
orientation of this line is called a phase angle.

Surface normal can be represented by zenith angle # and
azimuth angle ¢ in polar coordinate system. Reflection
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Figure 2. DOP and reflection angle (» = 1.5)

angle (= incident angle) corresponds to zenith angle, and
phase angle corresponds to azimuth angle. Two phase an-
gles are calculated in the range of 0 < ¢ < 360°, and the
difference of those two angles is 180°. Since we know the
surface normal is heading vertically to the viewing direc-
tion at the occluding boundary, we can solve the ambiguity
problem of the phase angle by propagating the determina-
tion of the phase angle from the occluding boundary to the
inner part of the object region. Therefore, we have only to
determine the reflection angle in order to obtain the surface
normal of the object surface.

We rotate the polarizer and observe the object by the
camera and calculate the DOP, which for reflected light
ranges from 0 to 1: DOP is 0 for unpolarized light, and
DOP is 1 for perfectly polarized light. The following for-
mula represents the relationship between DOP and the re-

flection angle;
2sin? 0 cos 0v/n2 — sin? 0 )
p =

n? —sin?# — n2sin? 6 + 2sin* 6
DOP p is the function of refractive index n and reflection
angle ¢. We assume that the refractive index is given, and
compute the reflection angle from the DOP.

Figure 2 illustrates equation (1). The vertical axis repre-
sents the DOP, and the horizontal axis represents the reflec-
tion angle. If the reflection angle is 0° or 90°, then the DOP
will be 0; and if the reflection angle is Brewster angle, g,
then the DOP will be 1. We obtain two reflection angles
from one DOP, except for the Brewster angle. One of the
angles is the true reflection angle and the other is not. Our
task is to solve this ambiguity problem to determine the true
surface normal.

3. Disambiguation

First, the DOP data will be segmented and classified into
three types of region, as described in Section 3.1. Next, we
prove the folding curve, defined in Section 3.1, is a geo-
metrical property of object surface, in Section 3.2. Then,
we rotate the object to obtain the DOP data from two dif-
ferent views. Section 3.3 describes the method to search
corresponding points for the pair of DOP data by using the
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Figure 4. (a) DOP image, (b) result of Brewster
segmentation; of bell-shaped acrylic object

folding curve. Finally, the method described in Section 3.4
solves the ambiguity problem by comparing the DOP at cor-
responding points.

3.1. Region segmentation

We calculate the DOP values of all of the points over the
object surface, and call the set of those DOP values the DOP
image. Figure 3 is a photograph of a bell-shaped transpar-
ent object, and DOP image of this object is shown in figure
4(a). The DOP is represented as a gray image in figure 4(a),
where black represents 0 DOP and white represents 1 DOP.

We divide the DOP image into some regions whose
boundaries will be the Brewster curve, the closed curve
which consists of only Brewster angle (= 1 DOP). We call
this segmentation method a Brewster segmentation method.
We assume the target object to have a closed smooth sur-
face, €', thus, we can disambiguate all of the points in the
region even if we disambiguate only one point in the region.

Figure 4(b) is the result of Brewster segmentation com-
puted from the DOP image shown in figure 4(a). There are
2 Brewster curves and 1 occluding boundary in figure 4(b).

We classify each region into 3 types (figure 5):

1. B-E region
2. B-N region
3. B-Bregion
B is for Brewster, N is for North pole, and E is for Equator.
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Figure 5. Gaussian mapping and regions

There is one B-E region, B-N region, B-B region each in
figure 4(b).

Figure 5 represents the Gaussian mapping of regions
from object surface to the Gaussian sphere. The north pole
of the Gaussian sphere represents the camera position.

We define the B-E region as a region that includes an oc-
cluding boundary. The occluding boundary will be mapped
onto the equator of the Gaussian sphere, whose points sat-
isfy # = 90°. We can disambiguate the points of B-E region
as 0p < 6 < 90°. The occluding boundary is calculated
from background subtraction.

We define B-N region as a region including a point where
¢ = 0°. Points where ¢ = 0° will be mapped onto the north
pole of Gaussian sphere. We assume that there is no self-
occlusion although we rotate the object at a small angle,
namely, if there is a point where p = 0 in the region and
there is still a point with p = 0 in the region even if we rotate
the object at a small angle, then we know that such point is
not # = 90° but # = 0°. Therefore, we can disambiguate
the points of B-N region as 0° < # < fp.

We define B-B region as a region which is not B-E region
nor B-N region; thus, B-B region on the Gaussian sphere
does not include the north pole nor the equator.

3.2. Folding curve and parabolic curve

Since the object surface is smooth, a closed region on the
object surface maps onto a closed region on the Gaussian
sphere. Therefore, B-B region on Gaussian sphere is always
enclosed by a Brewster curve and other additional curve(s).
We define such a curve, which is not a Brewster curve, as
a folding curve on the Gaussian sphere. From the theorem
provided below, we can conclude a folding curve to be a
geometrical property of the object surface which is useful
for searching corresponding points.

Theorem 1 A folding curve on the object surface is a
parabolic curve.
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Proof. Surface can be represented as f(z, y), and the sur-
face normal can be represented asn = (—p — ¢ 1)7 where
p=0f/0x and ¢ = §f/Jy. Gaussian sphere is a represen-
tation of a surface normal. Let P be a point on the folding
curve in the Gaussian sphere, and () be a point on the ob-
ject surface such that ¢(@Q)) = P. Then, according to the
definition of a folding curve, in neighbourhood of @, g is
not homeomorphic, in other words, () is a critical point of
g = (fe, fy), thus, Vp = V¢ = 0. Gaussian curvature K

will be;
8°f 82 f
B2 8z d
det 65}, (,foy

dydx dy?
EG - F?

where (;” fxy) is the Hessian. £, F and G are the
yr Jyy
parameters of the first fundamental form [15] where EG —

F? > 0 holds. O

K=

=0, (2)

3.3. Corresponding point

We rotate the object against the camera at a small angle
(figure 6). We solve the ambiguity problem by comparing
DOP images taken both before and after rotation. Two DOP
values must be compared at an identical point on the ob-
ject surface. We have to search for two points, one point
in each DOP images, where geometrical properties of the
object surface coincide.

Consider a great circle on Gaussian sphere which rep-
resents the rotation direction. We call this great circle the
rotation circle. The rotation circle includes the two poles.
Points that map onto the rotation circle still map onto the
rotation circle after the object rotation. Surface normal of
the points on the rotation circle is parallel to the rotation di-
rection. We define the intersection of the rotation circle and
the global folding curve of B-B region as the correspond-
ing point. From figure 7, we realize that the corresponding
point is a point which has minimum DOP within the points
in B-B region where the surface normal is parallel to the
rotation direction.

We first execute Brewster segmentation to the obtained
two DOP images, and then we search for one corresponding
point in each B-B region. If we have no corresponding point
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Figure 7. Corresponding point

in a certain rotation direction, we rotate the object in many
directions to obtain the corresponding point.

3.4. Difference of DOP

We represent the DOP of the object before rotation as
p(6), and represent the DOP of the object rotated at a small
angle Af as p(6 + Ag). Then, the difference of the DOP at
a pair of corresponding points will be as follows;

p(0 + AB) — p(6) ~ p'(0) A6 . 3)
The graph of DOP p is shown in figure 8(a), and the graph
of the derivative of DOP g’ is shown in figure 8(b).

The derivative of the DOP is positive when 0° < 8 <
fp, and negative when fp < € < 90°. We assume that the
rotation direction is given, namely, the sign of A# is given.
The sign of the difference of the DOP at corresponding
points can be calculated from obtained DOP images. Thus,
from equation (3), we can determine whether the points of
the region satisfy 0° < 6 < fp or g < 6 < 90°; namely,
we can solve the ambiguity problem.

Our proposed method uses only the sign for disambigua-
tion, not the value. We do not need to know the rotation
angle — the absolute value of A¢ — so that camera cal-
ibration is not needed. Even if there was an error in DOP
value or even if the rotation angle was not so small or even if
we do not give a precise rotation direction, the sign of DOP
would rarely change, thus, the method can be considered to
be robust.

4. Experiments
4.1. Experimental method

Our acquisition system is described in figure 9. As a
light source, we employ a spherical diffuser illuminated
from three 300-W incandescent light bulbs, located circu-
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larly 120 degrees apart. The spherical diffuser is made of
plastic, and its diameter is 40 cm. This spherical diffuser
becomes an unpolarized spherical light source and illumi-
nates an object that is located at the center of the sphere
from all directions. Because we determine surface orienta-
tions using only surface reflection and the surface reflection
occurs only when the reflecting and incident angles are the
same, it is necessary to illuminate an object from all direc-
tions in order to observe surface reflections over the entire
object surface.

The object is observed through a small hole at the top of
the sphere by a monochrome CCD camera. A polarization
filter is mounted between the hole and the camera.

We set a black plastic pipe on a black cloth and set the
object on the pipe to avoid the light emitting from behind
the object. However, interreflections still occur, reflect-
ing many times between the front-facing surface and back-
facing surface. Since we cannot know the object shape
a-priori, we cannot perfectly estimate such interreflection.
Thus, we assume the light caused by the interreflection is
an uniform unpolarized light. We estimate the intensity of
such light and we previously subtract the intensity from in-
put images.

We calculated the DOP by fitting a sinusoid with least-
square method from 36 images whose orientation of the po-
larizer was from 0° to 175° at intervals of 5°. We obtained
DOP images of the object surface by the acquisition system,
computed the surface normal of object surface, and finally
integrated the surface normal data to the height data by us-

Light Camera

source .
Light
source

Light et Polarizer
source,

A Diffuser

Figure 9. Experimental setup

Figure 10. Obtained shape of acrylic bell-
shaped object: (a) shading image, (b) ray-
tracing image

ing relaxation method [16, 19].
4.2. Experimental result

First we measured an acrylic transparent hemisphere
whose refractive index is 1.5 and diameter is 30mm. Height
error for this hemisphere was 1.1mm. The height error is
an average error throughout the entire object surface, com-
puted as an absolute difference between the true height and
the obtained height.

Next, we applied our method to the object shown in fig-
ure 3. The target object was a bell-shaped acrylic object
where the refractive index is 1.5 and the diameter(width)
was 24mm. We computed the entire surface shape of the
object by our method. The rendered images are shown in
figure 10: figure 10(a) is an example of shading image, fig-
ure 10(b) is an example of raytracing result.

Figure 11 illustrates the shape of the object observed
from the side view. The obtained shape is represented as
dotted curve, and the true shape is represented as solid
curve. Note that we artificially created the true shape by
hand using the silhouette from the photograph of the object.



Figure 11. Obtained height (dotted curve)
and true height (solid curve) of acrylic bell-
shaped object

Figure 12. Measurement result of epoxy
mountain-shaped object: (a) photograph of
the object, (b) estimated shape

According to the figure, the height error was calculated to
be approximately 0.4mm.

We also measured the object shown in figure 12(a) which
is a mountain-shaped epoxy object. The refractive index of
the object is 1.6, and the diameter(width) and the height
is 45Smm and 25mm respectively. Figure 12(b) shows the
estimated shape of the object.

5. Future work

Error in our estimation is mainly caused by interreflec-
tion of transparent objects. Our future work is to develop a
method which can handle the influence of interreflection.
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