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ABSTRACT

In this paper, we propose a novel photometric stereo method
that uses singular value decomposition. Singular value de-
composition can solve the photometric stereo problem when
the light source direction is unknown; however, it has the crit-
ical problem of being sensitive to outliers. We therefore pro-
pose a novel singular value decomposition method that is ro-
bust to outliers. We also show some results of our photometric
stereo method when applied to objects that involve not only
diffuse reflection but also specular reflection.

1. INTRODUCTION

In this paper, we propose a photometric stereo method that
is effective when the light source direction is unknown. Our
method can be applied to objects that have both diffuse reflec-
tion and specular reflection. Our method is based on a novel
singular value decomposition (SVD) method that is robust to
outliers. In addition, we use graph cut for detecting shadow
and specular reflection.

The uncalibrated photometric stereo estimates the sur-
face normal of the object from a large number of images but
without knowing the direction of light sources. Based on the
theory given by Woodham et al. [14], Hayakawa [7] proposed
the uncalibrated photometric stereo using singular value de-
composition (SVD). Later, many methods [1–3,6,8,10,12,15]
have been proposed which are the extension to Hayakawa’s
method. Generally, uncalibrated photometric stereo has a
problem that it is sensitive to outliers such as specular re-
flection and shadow. In this paper, we propose a robust
SVD method in order to overcome this problem. Mukaigawa
et al. [9] proposed the RANSAC-based method, while our
method, which is SVD-based, can be applied to many ap-
plication fields that use singular value (or eigen value). The
paper presented by Tomasi and Kanade [13] explains how
to calculate the motion and shape of the object when some
part of the data is missing, and our method is a generalized
version of their method which can be applied not only for the
structure-from-motion problem but also for the uncalibrated
photometric stereo problem. PCAMD/SVDMD (PCA/SVD
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with missing data) introduced by Shum et al. [11] also deals
with the problem when the partial data are missing; however,
the low-rank constraint is not incorporated in the PCAMD
itseslf. The incremental SVD proposed by Brand [5] deals
with both the low-rank constraint and the missing data, which
are also dealt with in our method. Brand’s method applies
the SVD incrementally for each iteration, while our method
applies the SVD to whole data for each iteration in order
to avoid the cumulative error intrinsic to an incremental ap-
proach.

2. FACTORIZATION USING SVD

If the number of the image is f and the number of the pixel is
p, all input data can be represented by the following matrix:

I = SL =

⎛
⎜⎝

i11 · · · i1f

...
. . .

...
ip1 · · · ipf

⎞
⎟⎠ , (1)

S =

⎛
⎜⎝

s1x s1y s1z

...
...

...
spx spy spz

⎞
⎟⎠ , L =

⎛
⎝ lx1 · · · lxf

ly1 · · · lyf

lz1 · · · lzf

⎞
⎠ . (2)

We call I the image matrix, and its rank is 3. Here, we
call s = (sx, sy, sz)� the surface vector, and we call l =
(lx, ly, lz)� the light vector. The surface vector is the product
of the unit surface normal vector and the albedo. The light
vector is the product of the unit vector representing the light
source direction and the light source intensity.

The image matrix can be decomposed by SVD as follows:

I = UWV � , (3)

where the size of U , W , and V � are p× 3, 3× 3, and 3× f ,
respectively. The surface matrix S and light matrix L can be
estimated as follows:

S = S′A , L = A−1L′ , (4)

S′ = UW 1/2 , L′ = W 1/2V � , (5)

where, S′ is called pseudo surface matrix and L′ is called
pseudo light matrix. A is a 3 × 3 invertible matrix, and rep-
resents an ambiguity. We will solve this ambiguity using the
constant albedo assumption [7, 14] and the ocluding bound-
ary constraint [10]. The above solution obliges the surface to
obey Lambert’s law, and will be affected by outliers such as



shadows and specular reflections. We propose a novel SVD
method in Section 3, which is robust to outliers. We utilize the
graph cut method as described in Section 4 in order to detect
shadows and specular reflections. Our algorithm calculates
this SVD method and this graph cut method alternatively for
each iteration until convergence.

3. HOLE-FILLING SVD

In this section, we propose a robust SVD method, which can
deal with the outliers included in the input data. The key idea
of the proposed method, which we call “hole-filling SVD,” is
to (1) Scrape the vector containing the outlier from the ma-
trix in order to obtain the sub-matrix not containing outlier
(2) Apply the SVD to the sub-matrix (3) Clean up the con-
taminated vector from the SVD result (4) Stick the refreshed
vector to the sub-matrix.

First, we explain the fine-to-coarse and coarse-to-fine ap-
proach. We denote the input matrix that we want to apply the
SVD to as X . First, we choose the column where the num-
ber of outliers is maximum in the input matrix, and remove
it. This process, which we call “column scraping,” can be
expressed as follows without loss of generality.

Xk−1 =
[

Xk xk

]
, (6)

where Xk−1 is the M × N matrix, Xk is the M × (N − 1)
matrix, and xk is the M × 1 vector. If we apply SVD to
Xk−1, the result will be bad since the column vector xk in
Xk−1 contains many outliers; however, if we apply SVD to
Xk, the result will be much better. Starting from the input
matrix X0, we make the matrix smaller and smaller by scrap-
ing the noisy columns and rows. Finally, we obtain a small
matrix with only a small amount of noise. If we apply SVD
to such a matrix, we will obtain a good result. Using the SVD
result, we want to clean up the contaminated vector in order
to suppress the interference of the outlier, and stick it to the
matrix. We use the term “column sticking” for this process.
Starting from the SVD result of such small matrix, we make
the matrix bigger and bigger by sticking the revised columns
and rows. Consequently, we obtain a better SVD result of
whole input matrix X . Row scraping and sticking can also be
similarly defined. How to clean up the contaminated vector
before sticking it to the matrix is explained as follows.

The key process of hole-filling SVD is to clean up the vec-
tor x. The application of SVD can be represented as follows:[

X

x�

]
=

[
U

u�

]
WV � , (7)

where X and U are M × N matrices, and W and V � are
N ×N matrices. W is the diagonal matrix where the singular
value is in descending order. We will only explain the pro-
cess for row scraping and sticking; however, the process for
column scraping and sticking is also the same. Our algorithm
assumes that the input matrix in an ideal case would be rank
deficient. Suppose that there are g singular values that are

non-zero in an ideal case (e.g., g = 3 in photometric stereo
(Eq. (3))). In this case, we can express the bottom part of
Eq. (7) as follows.

x� = ú�V́ � , (8)

where x� is 1×N vector, ú� is 1×g vector, and V́ � is g×N
matrix. Here, singular values are included in V́ �. Since the
input vector x� contains outliers, we do not solve Eq. (8).
First, we define the vector x̀� and the matrix V̀ � as follows.

(x̀�)j=
{

(x�)j (if (x�)j is not outlier)
0 (if (x�)j is outlier) , (9)

(V̀ �)ij=
{

(V́ �)ij (if (x�)j is not outlier)
0 (if (x�)j is outlier)

. (10)

We assume that we can specify which elements in the input
matrix are outliers. The zero value is filled in for the elements
which are specified as outliers. We obtain a much more re-
liable coefficient vector ú� as follows, since the outliers are
not used for estimating it.

ú� = x̀�V̀ +� , (11)

where superscript “+” represents the pseudo-inverse matrix
calculated by SVD. Now, we can revise the noisy vector x�

as follows:

(x́�)j =
{

(x�)j (if (x�)j is not outlier)
(ú�V́ �)j (if (x�)j is outlier)

. (12)

The outlier elements are filled in with the ideal value, and
we call this procedure “hole-filling.” Here, we only explained
the process for row scraping and sticking; however, the pro-
cess for column scraping and sticking is also the same. We
stick this refreshed vector x́�

k to the matrix Xk and make the

bigger matrix Xk−1 =

[
Xk

x́�
k

]
. We make the matrix bigger

and bigger sticking the vector cleaned up by the hole-filling
process. Finally, we obtain a better SVD result for the whole
input matrix X , namely, X0.

4. DETECTING OUTLIERS BY GRAPH CUT

In order to apply the hole-filling SVD (Section 3), we have to
detect the outliers. For detecting the shadow and specular pix-
els, we use the graph cut (min-cut/max-flow) algorithm [4].

We assume that the ambient light is already removed from
the input images; thus, the pixel brightness of the shadow is
zero. We define the data cost term δ as follows:

δ(1) = t1 ,

δ(0) =

⎧⎪⎨
⎪⎩

0 (ipf ≥ t3)
t3 − ipf

t3 − t2
(t2 < ipf < t3)

1 (ipf ≤ t2)

. (13)

Here, δ(0) represents the cost for a non-shadowed pixel, and
δ(1) represents the cost for a shadowed pixel. If the pixel
brightness ipf is less than a threshold, the cost for a non-
shadowed pixel δ(0) becomes maximum; thus, such a pixel



Fig. 1. Estimated shape.

can be considered as a shadowed pixel. However, such sim-
ple thresholding is not reliable due to the noise in the image;
thus, we also add the smoothness cost term ν as follows:

νp,q(βp, βq) = t0 |βp − βq| , (14)

where p and q represent the neighboring pixels, and β is a
label that takes 0 or 1. In our experiments, we use t0 =
0.25, t1 = 0.5, t2 = 8, t3 = 24 determined empirically,
where ipf varies from 0 to 255. If the image size is 640×480
and the number of images is 100, the number of whole input
pixels will be 30 millions; thus, the parameters t0, t1, t2, and
t3 are less sensitive to the final result since even if several hun-
dreds of diffuse pixels are wrongly detected as shadow pixels
or specular pixels, the detection error is quite small consider-
ing the 30 millions of input pixels. The graph cut is applied
for each input image. The detection of the specular pixel is
similar; thus, we will skip explaining it.

5. EXPERIMENTAL RESULT

5.1. Qualitative evaluation

We apply our SVD photometric stereo to a ceramics object
which has specularity. We took 100 images with freely mov-
ing the light source, and we estimated the shape (Fig. 1).

If we apply the SVD without removing the outliers such
as specular reflections and shadows, the whole surface shape
will distort as shown in Fig. 2 (b). We detect the shadowed
pixels and the specular pixels by graph cut robustly, and we
use the hole-filling SVD that is not influenced by such out-
liers; thus, we obtain the correct shape of the object as is
shown in Fig. 2 (a). If we use a simple thresholding to detect
shadows and speculars as is done by Hayakawa [7], clumsy
defects will appear at the estimated shape as is shown in Fig. 3
(b). Thanks to the fine-to-coarse and coarse-to-fine approach
of hole-filling SVD, the estimated shape is smooth enough
that the algorithm is insensitive to outliers (Fig. 3 (a)).

5.2. Quantitative evaluation

Fig. 4 (b) shows the results of our method. Fig. 4 (a) is ground
truth. Fig. 4 (c) is the result of Hayakawa’s method. Fig. 4
(3) represents the height error, and Fig. 4 (4) represents the
surface normal error. The error of our method (Fig. 4 (d)) is
smaller than the error of Hayakawa’s method (Fig. 4 (e)). The

(a) w/ outlier detection (b) w/o outlier detection

Fig. 2. The distortion caused by shadow and specular reflec-
tion: (a) Result of our SVD photometric stereo, which detects
shadow and specular pixels robustly, (b) Result if we apply
SVD to whole data, which contain shadow and specular re-
flection.

(a) Our method (b) Previous method

Fig. 3. The fraction caused by shadow and specular reflec-
tion: (a) Result of our SVD photometric stereo, which de-
tects shadow and specular pixels with graph cut, (b) Result of
Hayakawa’s SVD photometric stereo, which detects shadow
and specular pixels with simple thresholding.

numerical error is shown in Table 1. The computation time of
the hole-filling SVD dominates almost the whole computa-
tion time of the system since it uses the SVD method multiple
times for each iteration until convergence. Its computation
time depends on the input data size and the performance of
the computer, and the typical computation time of our exper-
iments in several situations was around more than one hour
and less than one day.

6. CONCLUSION

In this paper, we propose a photometric stereo that does not
require the light direction to be known. We solve the ambigu-
ity not by the users’ operation but by the property of the target
object itself. Thanks to our hole-filling SVD, our photometric
stereo is not affected by specular reflection and shadow. Our

Table 1. Evaluation. Our method estimates the surface nor-
mal with less RMSE (root mean square error) than conven-
tional method. The percentage in the table represents the rel-
ative ratio of the error compared to our result.

Our PS Hayakawa’s PS
Height RMSE 0.16 cm (100%) 0.18 cm (108%)
Normal RMSE 23.8◦ (100%) 25.9◦ (109%)



(1)

(a)

(2)

(3)

(4)

(b) (c) (d) (e)

Fig. 4. Comparison. (a) True value, (b) The result of our SVD
photometric stereo (PS), (c) The result of Hayakawa’s SVD
PS, (d) The error of our SVD PS, (e) The error of Hayakawa’s
SVD PS; (1) Azimuth angle (red: upper direction, blue: left-
bottom direction, green: right-bottom direction), (2) Zenith
angle (blue: 0◦, red: 90◦), (3) The difference of the height
(the brighter the noisier), (4) The difference of the surface
normal (the brighter the noisier).

hole-filling SVD can be applied to any other methods that use
SVD.
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