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Abstract

In order to create a photorealistic Virtual Reality model, we have to record the appearance of the
object from different directions under different illuminations. In this paper, we propose a method that
renders photorealistic images from a small amount of data. First, we separate the images of the object
into a diffuse reflection component and a specular reflection component by using linear polarizers.
Then, we estimate the parameters of the reflection model for each component. Finally, we compress
the difference between the input images and the rendered images by using wavelet transform. At
the rendering stage, we first calculate the diffuse and specular reflection images from the reflection
parameters, then add the difference decompressed by inverse wavelet transform into the calculated
reflection images, and finally obtain the photorealistic image of the object.

1 Introduction

Rendering of photorealistic 3D images is widely used today in medical, educational, entertainment, arts,
and digital archive fields. Under the circumstances, we propose a compression technique for bright-
ness information that reconstructs the appearance of the object and renders photorealistic 3D images
with improved clarity. Image-based rendering is a powerful tool for representing the appearance of an
object [5, 14, 25, 32, 64, 65]. Most of the methods cited do not use geometrical information about the
object, but we prefer to use this information since there is a wide application field for this method. By
using the geometrical model, we can detect collision between multiple objects, and we can calculate
shadows cast between them. A virtual object image in an arbitrary environment can be obtained from
geometrical information and the mathematical reflection model. We categorize the methods for doing
this as model-based appearance methods. Model-based appearance methods have a problem in that there
is a limitation on the object types to which the parametric reflection model can be applied. Another ap-
proach is to render a scene by using geometrical information based on real images, and we categorize
these methods as image-based texture methods. Image-based texture methods have an advantage in
that they can be applied to any type of object, regardless of the object’s reflection property. However,
image-based methods need a huge database of real images. Our approach is a hybrid of model-based
appearance and image-based texture methods. We first represent the appearance of the object by using
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the mathematical reflection model. We also store the difference between the input images and the ren-
dered images computed by the mathematical reflection model. We compress such difference by using a
wavelet transform.

1.1 Related Work

1.1.1 Model-Based Appearance Method

Given the 3D model of the object and the illumination condition, we can estimate the parameters of
the reflection model. Ikeuchi and Sato [17] are the pioneers who estimated the reflection parameters of
the object by using 3D geometry obtained by range sensor. Baribeau et al. [3] estimated the reflection
parameters and the 3D geometry using 3 types of lasers: red, green, and blue. Kay and Caelli [19]
estimated the 3D shape of the object using a photometric stereo method, and also estimated the reflection
parameters. Sato et al. [59] developed a system to model the reflection parameters and 3D geometry by
using a range sensor. Shibata et al. [63] improved Sato et al.’s method by separating the diffuse reflection
and the specular reflection with polarizers. Marschner et al. [36] captured the reflectance of an object
with a known shape by rotating the light source. Debevec et al. [8] acquired the reflectance field of
the human face by moving the light source around the face. Also, they [9] acquired the reflectance
field of cultural artifacts and showed the usefulness of their method for digital archiving. Machida
et al. [31] analyzed the interreflection using the radiosity algorithm in order to estimate the correct
reflection parameters.

Some researchers also estimated the illumination condition at the same time. In addition to the reflec-
tion parameters, Ramamoorthi and Hanrahan [54] estimated the illumination distribution by representing
the low frequency component of the illumination with spherical harmonics. Nishino et al. [48] estimated
both the direction of the light sources and the reflection parameters from a small number of photographs.
Hara et al. [15] estimated both the reflection parameters and the position of the light source from a single
image. They [16] also proposed a method to estimate the direction of the light sources when the number
of the light sources is unknown. Sato et al. [56] estimated both the illumination distribution and the
reflection parameters from the shadow of the object. Kim and Hong [21] extended Sato et al.’s method
so that it could be applied even if the shadowed region has a complex texture.

Recently, interesting research projects have been proposed to estimate the reflection parameters when
the 3D shape of the object is unknown or unreliable. In addition to estimating the reflection parameters,
Lensch et al. [24] optimized the surface normal in order to represent the fine detail of the object. Nayar
et al. [44] estimated the reflection parameters of shiny objects by using a setup they called “photometric
sampler.” Fuchs et al. [10] fitted the deformable face model to human face images and estimated the
reflection parameters that can easily transfer them to other face models. Georghiades [12] proposed
a method to estimate the reflection property and the 3D shape at the same time from a small number
of images. Lu and Little [29] estimated both the reflection parameters and the shape of the object by
rotating the object. Goldman et al. [13] estimated both the reflection parameters and the surface normal
by using the photometric stereo method. The specular reflection component is removed by the analysis
of dichromatic reflection model in the research presented by Shen et al. [62], and they estimated both
the reflection parameters and the surface normal by using the photometric stereo method. Sato and
Ikeuchi [58] observed the object by changing the direction of the light source, and they separated the
diffuse reflection component and the specular reflection component as well as estimating the surface
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normal of the object. Tominaga and Tanaka [69] estimated the reflection parameters and the surface
normal from a single image by using color analysis and the shape-from-shading method. Zheng and
Chellapa [78] estimated the surface normal and the light source direction from a single image by using
the shape-from-shading method. Nayar et al. [45] separated the diffuse reflection component and the
specular reflection component from color and polarization analysis, and they also estimated the surface
normal by using the photometric stereo method. Kim et al. [20] estimated both the surface normal and
the direction of the light source from a bump on the surface of the object.

Polarization is a powerful tool for estimating the shape of the object. Miyazaki et al. [39] estimated
the shape, the reflection parameters, and the direction of the light sources from color and polarization
information. Atkinson and Hancock [1, 2] estimated the surface normal from polarization images by
matching local patches of the surface in two views.

Capturing the temporal variance of the reflectance is also interesting. Sun et al. [67] captured the
transition of the appearance while the object is sprayed, dried, or dusted.

Table 1 and Table 2 list the features of some of the above-mentioned methods. Our method can express
arbitrary reflection as is also done in other state-of-the-art techniques.

1.1.2 Image-Based Texture Method

Image-based texture methods represent the appearance of the object with the captured images them-
selves. For example, Marschner et al. [37] rendered the images of an object by retrieving the appearance
from a database that is constructed from real images of the object taken under different illumination and
from different viewpoints.

Since image-based texture methods need a huge image database, many researchers tried to compress
the data. Wood et al. [76] compressed the appearance obtained by multiple images taken from multiple
views by using principal function analysis. The eigen-texture method proposed by Nishino et al. [47]
reduces the data by using principal component analysis (PCA) for each face on a 3D geometric model of
input images. Furukawa et al. [11] compressed the image database for each face of the geometric model
with tensor product expansion. The tensor-texture method proposed by Vasilescu et al. [73] renders
the image by applying N-mode singular value decomposition to the image database. Wang et al. [74]
used out-of-core tensor approximation instead of N-mode singular value decomposition. Magnor et
al. [33] compressed the textures with wavelet transform. Ma et al. [30] expressed the image database by
a Laplacian pyramid for each face. Ju et al. [18] used PCA in order to compress the components that
cannot be expressed by the reflection model. Table 3 lists the features of each method.

PCA, tensor product expansion, N-mode singular value decomposition, and out-of-core tensor ap-
proximation also preserve the basis function. More data size is needed to preserve the basis function
as well as the coefficients of the basis function, which results in a larger data size than the data size of
the method that only preserves the coefficients. The basis functions of Laplacian transform and wavelet
transform are exponential function and wavelet function, respectively. Since the basis functions are
known for these techniques, we only have to preserve the coefficients. Wavelet transform is more use-
ful than Laplacian transform for image compression and is commonly used in recent research, such as
image-based lighting [38,46] or image-based rendering [23,26,52]. Wavelet basis (used in JPEG 2000)
produces better results than the Fourier basis (or discrete cosine transform used in JPEG) [66]. JPEG
2000 uses both the Le Gall wavelet and the Daubechies wavelet, and the Daubechies wavelet can more
effectively compress the images than the Le Gall wavelet [66]. Wavelet-like basis produced by sparse
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Table 1: Model-based appearance methods. Here, “active 3D sensing” represents the light-stripe laser
range sensor or the structured-light range sensor that estimates the shape by triangulation, “time-of-
flight” represents the time-of-flight laser range sensor, “CT” represents the computed tomography, and
“photometric method” represents shape-from-shading, photometric stereo, or the extension of these
methods. For reflection component separation, “color” means that the components are separated from
the analysis of dichromatic reflection model, and “do not separate” means that separating the compo-
nents is not needed, or the method separated them numerically without the necessity of having different
color vectors between the diffuse reflection and the specular reflection.

Geometry Specular reflection Separation
Shibata et al. [63] Active 3D sensing Torrance-Sparrow 2 polarizers
Debevec et al. [8] Active 3D sensing Torrance-Sparrow 2 polarizers
Marschner et al. [36] Time-of-flight Lafortune 2 polarizers
Sato et al. [59] Active 3D sensing Torrance-Sparrow Color & image sequence
Machida et al. [31] Active 3D sensing Torrance-Sparrow Image sequence
Ikeuchi & Sato [17] Active 3D sensing Torrance-Sparrow Do not separate
Baribeau et al. [3] Active 3D sensing Torrance-Sparrow Do not separate
Lensch et al. [24] Active 3D sensing / CT Lafortune Do not separate
Fuchs et al. [10] 3D face model Ward / Cook-Torrance Do not separate
Nishino et al. [48] Active 3D sensing Torrance-Sparrow Image sequence
Hara et al. [15] Active 3D sensing Torrance-Sparrow 2 polarizers
Sato et al. [56] Photomodeling tool Torrance-Sparrow Do not separate
Kim & Hong [21] Given Diffuse only Diffuse only
Ramamoorthi & Hanrahan [54] Active 3D sensing Phong Do not separate
Sato & Ikeuchi [58] Photometric method Specular spike Color & image sequence
Nayar et al. [44] Photometric method Specular spike Do not separate
Kay & Caelli [19] Photometric method Torrance-Sparrow Do not separate
Shen et al. [62] Photometric method Ward Color
Goldman et al. [13] Photometric method Arbitrary Do not separate
Lu & Little [29] Photometric method Arbitrary Do not separate
Zheng & Chellapa [78] Photometric method Diffuse only Diffuse only
Kim et al. [20] Photometric method Diffuse only Diffuse only
Tominaga & Tanaka [69] Photometric method Phong Color
Georghiades [12] Photometric method Torrance-Sparrow Do not separate
Nayar et al. [45] Photometric method Arbitrary Color & 1 polarizer
Miyazaki et al. [39] Polarization Torrance-Sparrow Color
Our method Active 3D sensing Arbitrary 2 polarizers
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Table 2: Model-based appearance methods continued from Table 1. In “Light source” column, most
methods assume the infinite far light source. “Metal sphere” means that the light source direction is
given by the observation of shiny spherical object.

Geometric configuration Light Illumination
Camera Object Light source estimation

Shibata et al. [63] Fixed Moving Fixed Point light Given
Debevec et al. [8] Moving Fixed Moving Point light Given
Marschner et al. [36] Fixed Moving Moving Point light Given
Sato et al. [59] Fixed Moving Fixed Point light Given
Machida et al. [31] Moving Fixed Moving Point light Given
Ikeuchi & Sato [17] Fixed Fixed Fixed Point light Given
Baribeau et al. [3] Fixed Fixed Fixed Laser Given
Lensch et al. [24] Moving Fixed Moving Point light Metal sphere
Fuchs et al. [10] Fixed Moving Moving Point light Metal sphere
Nishino et al. [48] Moving Fixed Fixed Point light Estimate
Hara et al. [15] Fixed Fixed Fixed Point light Estimate
Sato et al. [56] Fixed Fixed Fixed Arbitrary Estimate
Kim & Hong [21] Fixed Fixed Fixed Arbitrary Estimate
Ramamoorthi & Hanrahan [54] Fixed Fixed Moving Arbitrary Estimate
Sato & Ikeuchi [58] Fixed Fixed Moving Extended light Given
Nayar et al. [44] Fixed Fixed Moving Extended light Given
Kay & Caelli [19] Fixed Fixed Moving Point light Given
Shen et al. [62] Fixed Fixed Moving Point light Given
Goldman et al. [13] Fixed Fixed Moving Point light Given
Lu & Little [29] Fixed Moving Fixed Point light Given
Zheng & Chellapa [78] Fixed Fixed Fixed Point light Estimate
Kim et al. [20] Fixed Fixed Fixed Point light Estimate
Tominaga & Tanaka [69] Fixed Fixed Fixed Point light Estimate
Georghiades [12] Fixed Fixed Moving Point light Estimate
Nayar et al. [45] Fixed Fixed Moving Point light Estimate
Miyazaki et al. [39] Fixed Fixed Moving Point light Estimate
Our method Fixed Moving Fixed Point light Given

Table 3: Image-based texture methods.

Representation Diffuse Specular
Wood et al. [76] Principal function analysis
Nishino et al. [47] (Eigen-texture) PCA
Furukawa et al. [11] Tensor product expansion
Vasilescu et al. [73] (Tensor-texture) N-mode SVD
Wang et al. [74] Out-of-core tensor approximation
Magnor et al. [33] Wavelet transform
Ju et al. [18] PCA Lambertian Phong
Ma et al. [30] Laplace transform Lambertian Phong
Our method (Wavelet-texture) Wavelet transform Lambertian Torrance-Sparrow
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coding [50] more effectively compresses a natural image than the Fourier-like basis produced by PCA.
Liu [27] demonstrated that the Gabor wavelet can represent the detailed features of images more effec-
tively than PCA. The basis images obtained by PCA or tensor-based approach can represent the image
well only if the input images are similar. Our approach compresses the difference between the input
images and the rendered images computed by the mathematical reflection model. Such differences are
difficult to represent by a small number of basis images. Wavelet can effectively compress the edges and
the brightness value, which is spatially incoherent; thus, we favor wavelet rather than PCA.

1.1.3 Reflection Component Separation by Using Polarizers

Before we compress the appearance of the object, we separate the diffuse reflection component and
the specular reflection component in order to model each component with the parametric reflection
function. Though we can fit the parametric reflection model to the input images without separating
each component, we take this approach for increased flexibility of the system: if we want to change the
specular reflection model, the system can be easily upgraded by just swapping the source code of the
specular reflection model. Also, separating each component is useful for analyzing the appearance of
the object in order to upgrade the system to enhance data compression.

Many previous researchers separate each component by analyzing the color of the object. The basic
idea of such separation is proposed by Klinker et al. [22], who analyzed the T-shaped distribution of the
dichromatic reflection in color space. Recently, Tan et al. [68] separated the diffuse reflection compo-
nent and the specular reflection component by using the color space called the maximum chromaticity
intensity space. Mallick et al. [35] represented the input image with SUV color space, and applied pho-
tometric stereo to the image without specular reflection, which is calculated from U and V components
of the SUV color space. In order to separate the reflection components, these methods use an image
whose specular reflection component is suppressed though the color is changed. This image is called a
specular-free image [68] or a UV image [35], and is useful for shape estimation [35, 39].

The reflection components can also be separated by using polarizers. Lin and Lee [28] separated the
diffuse reflection component and the specular reflection component by using a special camera that has
a 0◦ linear polarizer in front of the R channel, a 60◦ linear polarizer in front of the G channel, and a
120◦ linear polarizer in front of the B channel. They took two images from two different views, and
they separated the components by analyzing the distribution of the components projected onto the 3D
space, which consisted of an R-0◦ axis, a G-60◦ axis, and a B-120◦ axis. Umeyama and Godin [72]
separated the diffuse reflection component and the specular reflection component by using independent
component analysis (ICA). Cula et al. [6] lit the object with multiple linear polarized lights in order to
obtain a specular image with a high signal-to-noise ratio. They decomposed the specular image of the
object illuminated by multiple lights into individual specular images of the object, each illuminated by
a single light.

If we use a color-based method, we cannot estimate the diffuse reflection component if the object
is white. Therefore, we separate the specular reflection component and the diffuse reflection compo-
nent using linear polarizers [8, 15, 36, 63]. The polarization-based separation method can be applied to
plastics, paints, papers, metals, woods, clothes, glasses, or liquids. However, it cannot be applied to
polarizers, liquid crystals, or calcite; it can only be applied to the materials whose molecules are isotrop-
ically arranged and cannot be applied to the materials whose molecules are anisotropically arranged. In
practice, the polarizers cannot perfectly block the light; thus, the separation will be slightly imperfect
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for the objects whose specular reflection is strong, such as metals, glasses, or liquids. The appearance
of such separation error cannot be expressed by a reflection model while our method can express such
appearance; however, the size of the compressed data increases since such separation error cannot be
represented by reflection models.

1.2 Overview

The goal of our method is to compress the data in order to render photorealistic images. Fig. 1 describes
the flow of our proposed algorithm. First, we obtain the geometrical data of the target object by using a
laser range sensor. Second, we rotate the object and observe the object from many directions. Next, we
obtain the correspondence between the image and the geometrical data. Then, we separate the specular
reflection component and the diffuse reflection component using a linear polarizer. After that, we esti-
mate the parameters of the reflection model for each reflection component. Our proposed method uses
the Torrance-Sparrow model for specular reflection, which is much more photorealistic than the Phong
model. However, a reflection model is a simplified expression of a real reflection; thus, it cannot always
express the exact reflection. Therefore, we enhance the rendering precision by saving the component that
cannot be expressed by reflection models. We compress this component by discrete wavelet transform
to reduce the data size. We call our proposed method the “wavelet-texture method.” The Eigen-Texture
method can only compress in one dimension; however, our method can compress the data in three or
more dimensions. The texture is two-dimensional data, and if we take many images by moving the cam-
era two-dimensionally and moving the light two-dimensionally, we obtain six-dimensional data, and our
method can be useful for such high-dimensional data. Our proposed method is based on the research
done by Shibata et al. [63]. We use the software developed in the previous research in order to estimate
the parameters of the reflection model. Both the previous research and the current research use polarizers
in order to separate the specular reflection component and the diffuse component. The main contribution
of the current research is to use wavelet transform to compress the component that cannot be expressed
by reflection models.

We describe the proposed method based on wavelet compression in Section 2, and we provide some
experimental results in Section 3. We summarize this paper in Section 4, and also discuss a drawback of
this method to be overcome in the future.

2 Wavelet-Texture Method

2.1 Modeling Stage

In our experiment, we used the acquisition system shown in Fig. 2. We set the target object on a rotary
table and obtained the range images and the color images while rotating the rotary table in a constant
interval. In order to express the appearance of the object as realistically as possible when viewed from
any directions and illuminated from any direction, we sampled the data in a constant interval. Each
range image obtained by the laser range sensor was registered by alignment software [49] and integrated
into a unified mesh model by merging software [55]. Through the merging stage, we also reduced many
meshes so that the data size would be small. The proposed method only requires a small set of meshes for
representing the appearance of the object. By using the camera calibration method [71], we obtained the
correspondence between the 3D mesh model and the 2D color image. To differentiate diffuse reflection
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Images Geometry VR model

Reflection model Compression

Model-based appearance Image-based texture

Wavelet-texture method

Figure 1: Wavelet-texture method.

from specular reflection, we set linear polarizers in front of the camera and the light source (Fig. 2). In
order to separate the reflection components, we have to rotate the polarizer in at least 3 angles. For robust
calculation, 4 images [41] or 36 images [40] are preferable, though we only set 2 angles [8] manually in
order to reduce the time spent for the measurement. We set a vertical polarizer in front of the light source.
First, we take the images with the camera where the polarizer is placed horizontally to block specular
reflection, and next we take the images with the vertical polarizer to accentuate it. Fig. 3 represents the
diffuse reflection component and the specular reflection component separated by polarizers.

By taking the images of the object from many viewpoints and under many illuminations, we can
sample the BRDF (bidirectional reflectance distribution function) of the object’s surface. The geometric
data and the photometric data were calibrated in the same position by the camera calibration method [71].
We represented the geometric data with 3D triangular meshes. For the time being, suppose that we

Light source

Laser range sensor

Camera Polarizer
Rotary table

Target object

Figure 2: Data-capturing system.
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Figure 3: Result of reflection component separation: (a) Ordinary image, (b) diffuse component image,
(c) specular component image.

rotated the object in one dimension, t-axis; thus, the whole input image data would be three-dimensional
data, I(x, y, t).

I(x, y, t) = Ireflect(x, y, t) + Iresidual(x, y, t) , (1)

where I represents the input image and Ireflect represents the mathematical reflection model. Here,
Iresidual(x, y, t) represents the difference image between I and Ireflect, and represents the residual which
cannot be expressed by the parametric reflection model. First, we extracted the input image for each
triangular mesh (Fig. 4 (a)). Next, we estimated the parameters of the reflection models to approximate
the obtained BRDF. Then, we rendered the image using the estimated reflection parameters, under the
same conditions as the input image. This rendered image was also extracted for each triangular mesh
(Fig. 4 (b)). The difference image, Iresidual, is the difference between these images (Fig. 4 (c)). Finally,
we compressed Iresidual by using the wavelet [34].

We used the Lambertian model for the diffuse reflection model, and the Torrance-Sparrow model
[70] for the specular reflection model in order to express the mathematical reflection model, Iresidual

(Eq. (1)). We estimated the parameters of the Lambertian model and the Torrance-Sparrow model from
the component images. We used the same specular reflection parameters for all the surface points to
reduce the data size for storage, and to robustly estimate the parameters. This paper proposes the basic
idea for BRDF compression, and does not deal with the computation speed of the rendering.

The diffuse reflection parameters were estimated for each pixel of the upper left half of the image
whose size ism×m, which can be mapped onto the face of each triangle of the 3D mesh model (Fig. 4).
The size m should be appropriately determined by considering the resolution of the input images, the
number of 3D meshes, and the resolution of the output image the user desires. In order to enhance the
quality of the output image, we have to use as much data as possible for input images and 3D mesh
models. On the other hand, in order to reduce the data size to store, we have to use as little data as
possible. Calculating the 3D geometry is usually more time-consuming than calculating the 2D texture;
thus, we limited the number of the triangle’s faces to be less than 4096. Also, in our experiment, the
size of each input image was 640 × 480. In order to preserve all the data, we had to use an albedo map
whose size was larger than 640× 480; in fact, it was 1024× 1024. Consequently, in our experiment, we
used size 16 × 16 for the albedo map for each triangle’s face, where the size of the whole albedo map
was 1024 × 1024, and the number of the faces was less than 4096.
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(×2) (×4)(×2)

Figure 4: Calculating the difference for the faces of each triangle: (a) Input diffuse image, (b) calculated
diffuse image by reflection model, (c) difference image of diffuse component. In (c), the negative value
is expressed as its absolute value for visibility. “(×n)” indicates that the intensity is multiplied by n to
improve visualization for the reader.

2.2 Rendering Stage

Any discretized illumination distribution can be expressed by a set of point light sources Lj (which
include both its intensity and its size). We assume that the point light source L (which also includes both
the intensity and the size) that is used for obtaining input images is known.

The final rendering image Î can be calculated from the formula shown below, if we render the image
from the same viewpoint and with the same light source as the input image.

Î =
∑
j

Lj

L

(
Îreflect + Îresidual

)
. (2)

Îreflect is rendered by the reflection model, and Îresidual is the difference image (Eq. (1)).
As for rendering an arbitrary scene, we used the linear interpolation in the experiment for Îresidual, and

we calculated Îreflect exactly for the required scene. The problem of linear interpolation is inconspic-
uous, thanks to the small size of the difference information; however, it is better to use more efficient
interpolation for rendering an arbitrary scene. Another solution is to densely sample the data, and both
are still remaining as possible solutions in our next implementation.

2.3 Data Compression

Image-based texture methods render the images by using the sampled BRDF or the compressed data
representing it. Model-based appearance methods approximate the sampled BRDF by a parameterized
BRDF. Since the reflection model used for model-based appearance methods is just an approximation,
there is a difference between the real image and the image rendered by the reflection model. In addition to
such photometric reasons, geometric factors such as the precision of the geometric data and the precision
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of the camera calibration also cause some types of noise. Therefore, we rendered the image by also
saving the information that cannot be expressed by the reflection model, which is the difference image
between the input image and the image rendered by the reflection model Iresidual (Eq. (1)).

However, multiple difference images have redundant information; thus, we compressed the data.
Since the difference images have less information about the appearance than the sampled BRDF, it
is more effective to compress the difference images than the sampled BRDF itself, in order to reduce
the data size while still preserving the photorealistic appearance. We compressed the sequence of dif-
ference images with n-D discrete wavelet transform [7]. There are many kinds of wavelets, such as the
Haar wavelet, the Gabor wavelet, and the Daubechies wavelet. The Daubechies wavelet has a higher
performance in image compression than the Haar wavelet [38]. The Gabor wavelet is not orthogonal [7]
and it cannot be applied for multi-resolution representation, namely image compression. Therefore we
used the Daubechies N=2 wavelet rather than Haar or Gabor wavelets. We calculated the sequence of
the difference images, Iresidual (Eq. (1)), and compressed them for each component with the Daubechies
wavelet. We stored only the wavelet coefficients that have large values in order to reduce the size of the
data.

In our experiment, we fixed the light source, and changed the viewpoint in one dimension. We want
to capture images by rotating the light source and the viewpoint in all directions, and this is important
future work. Note that it is easy to extend the 3D wavelet to a 4D wavelet, a 5D wavelet, or a 6D wavelet.

3 Evaluation

In this paper, we represented the quality of the image by PSNR (peak signal-to-noise ratio). The unit of
PSNR is dB (decibel), and it has a large value if the image quality is high; it varies from 0 to ∞. PSNR
is an objective measure, and is widely used in order to evaluate the quality of a compressed image;
for example, ISO uses both PSNR and human perception in order to evaluate the quality of CODEC
(coder/decoder). The calculation of PSNR is as follows:

PSNR = 10 log10

(
MAX2

MSE

)
(3)

MSE =

∑
p∈P

(
I − Î

)2

|P| , (4)

where P represents the whole pixels. Empirically, people found that if the PSNR changes 0.2 dB,
humans can detect the difference between two images. In addition, it is said that the image is indistin-
guishable from the original if the PSNR is more than 50 dB, the quality of the image is excellent if the
PSNR is around 40 dB, the image has a fair quality around 30 dB, and the image is totally dissimilar to
the original if the PSNR is less than 20 dB [4, 60].

Through our experiment, we intend to show that preserving the residual is important; thus, we compare
our method to the model-based appearance method (Section 3.2) and the image-based texture method
(Section 3.3). We do not compare it with the image-based rendering method since the purpose of our
research is to compress the appearance mapped as a texture onto a 3D mesh model. Since we use the
same 3D mesh model when comparing our method to other methods, we only calculate the compression
ratio of the image data, and we do not include the 3D data in our calculations.
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Figure 5: Frequency analysis: (horizontal axis) frequency, (vertical axis) amplitude; (a) input diffuse
reflection image, (b) rendered image by diffuse reflection model, (c) difference diffuse reflection image.

We chose three different objects in our experiment in order to evaluate the performance of the pro-
posed method. In Section 3.1, 3.2, 3.3, and 3.4, we applied our method to fish-like pottery in order to
corroborate the usefulness of our method to real objects. Here, we show three results (Fig. 6, Fig. 7,
and Fig. 9) with different compression ratios (28:1, 42:1, and 48:1, respectively) in order to show the
variation of image quality when the compression ratio changes. In order to verify that our method can
apply to a real object that cannot be assumed as a Lambertian object, we applied our method to a cloth in
Section 3.5, and we show the detailed results when the compression ratio changes. Our method can be
also applied to an object surface that cannot be represented by the Torrance-Sparrow reflection model,
and we show the result when applied to a specular surface generated by simulation in Section 3.6. Our
method can also deal with an object surface that cannot be represented by Lambertian reflection model;
thus, we show the result in Section 3.7 when applied to a diffuse surface generated by simulation.

3.1 Applying Fourier Transform

Fig. 5 (c) shows the spectral power of the difference images, Iresidual, calculated by Fourier transform.
The spectrals of input images Iinput and rendered images by reflection parameters Ireflect are also shown
in Fig. 5 (a) and Fig. 5 (b), respectively. The low frequency component of the difference image (Fig. 5
(c)) is smaller than that in Fig. 5 (a) (b); however, this low frequency component is higher than the
high frequency component. The difference image (Fig. 5 (c)) has a similar amount of high frequency
component as the input image (Fig. 5 (a)). Fourier transform is not adequate because it eliminates the
high frequency component for compression. However, compression by wavelet transform can preserve
both the high frequency component and the low frequency component.

3.2 Comparison to the Model-Based Appearance Method

We rotated the object shown in Fig. 6 (a) in 36 directions with a 10◦ interval. Fig. 6 (b) represents
the rendered result using the estimated diffuse reflection parameters, specular reflection parameters, and
geometrical model. The PSNR of the image produced by the model-based appearance method was less
than 30 dB. On the other hand, the result of our wavelet-texture method can render the information that
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Figure 6: Comparison between model-based appearance method and wavelet-texture method: (a) Input
image, (b) result of model-based appearance method, (c) result of wavelet-texture method (compres-
sion ratio 28:1), (d) (horizontal axis) pixel position, (vertical axis) intensity; (solid line)=(a), (dashed
line)=(b), (dotted line)=(c).

cannot be reconstructed from the reflection model only (Fig. 6 (c)). Fig. 6 (d) is the plot of the intensity
of the points indicated by the horizontal line in Fig. 6 (a)–(c). The intensity of specular reflection varies
dramatically; thus, the estimation of the specular reflection parameters tends to be affected by some
noises caused by the geometrical model, camera calibration, object surface, and so on. However, our
method succeeds in producing an image that is close to the input image.

3.3 Comparison to the Image-Based Texture Method

Fig. 7 (b) (c) shows the result of the image-based texture method, and Fig. 7 (d) (e) shows the result
of the wavelet-texture method. Fig. 7 (a) is an input image for comparison. The image-based texture
method we used here does not separate the reflection components, does not use reflection models, and
compresses only by wavelet. Fig. 7 (b) (d) shows the rendering results, and Fig. 7 (c) (e) shows the
errors between the rendered image and the input image. The PSNR of the wavelet-texture method was
48 dB, and the PSNR of the image-based texture method was 47 dB; thus, the image quality of the
proposed method was higher than that of the image-based texture method. Note that increasing 0.1
dB is considered to be quite important for research in the field of image compression, and our method
increased the PSNR 0.95 dB. Also, there is a noise at the boundary of each face of geometrical data
when processed by the image-based texture method compared to the proposed method.

In this experiment, the compression ratio was 42:1 for both of these methods. However, we only
compared the data size of wavelet coefficients, and we have not included the data size of reflection
parameters. In our current implementation, the reflection parameters are not compressed. We repre-
sented the diffuse reflection parameters with a 1-byte non-negative integer value. We represented the
reflectance of specular reflection parameters with a 1-byte non-negative integer value and the surface
roughness of specular reflection model with a 4-byte real number. The wavelet coefficients are repre-
sented by 4-byte integer value. The fish data we used have 4,076 faces. As we have already stated, each
face is represented by the texture whose size is 16× 16. We took 36 images from different viewpoint. In
this case, the actual compression ratio and the PSNR are shown in Table 4 and Fig. 8. As expected, the
wavelet-texture method is effective than the image-based texture method when the data size is small.
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Figure 7: Comparison between image-based texture method and wavelet-texture method: (a) Input im-
age, (b)(c) result of image-based texture method (compression ratio 42:1), (d)(e) result of wavelet-texture
method (compression ratio 42:1), (b)(d) rendered result, (c)(e) difference between rendered image and
input image.

Table 4: The value of PSNR of image-based texture method and wavelet-texture method. The actual
compression ratio is used for experiment.

Compression ratio 35.8:1 30.5:1 28.7:1 10.8:1 5.2:1 4.7:1 4.3:1 2.9:1 2.0:1 1.6:1 1.5:1 1.4:1
PSNR [dB] Image-based texture 22.9 23.6 23.8 29.4 32.6 32.9 33.2 34.1 34.5 34.6 34.6 34.6

Wavelet-texture 23.7 24.6 25.0 30.6 33.0 33.3 33.5 34.1 34.5 34.6 34.6 34.6
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Figure 8: The relationship between the PSNR of the rendering image and the rate. The result of image-
based texture method is represented by diamond mark, and the result of wavelet-texture method is rep-
resented by triangle mark. The actual compression ratio is used for experiment.

3.4 Comparison to the Motion JPEG 2000 Method

The sequence of 2D images is treated as 3D data in this experiment, and our method compresses them by
a 3D Daubechies wavelet. Another way to compress the image sequence is to compress all 2D images
one by one with a 2D Daubechies wavelet. In this section, we temporarily call this the “motion JPEG
2000” method, and compare it with our method. This motion JPEG 2000 method is implemented not
to use reflection models; thus, for fair comparison, we do not compare it with the proposed method but
compare it with the image-based texture method described in Section 3.3.

The result is shown in Fig. 9. Fig. 9 (a) is an input image. Fig. 9 (b) is the result of the motion
JPEG 2000 method, and Fig. 9 (c) is the result of the image-based texture method. The image quality
of the image-based texture method, whose PSNR is 43 dB, is higher than that of the motion JPEG 2000
method, whose PSNR is 27 dB. Section 3.3 indicates that the image quality of the proposed method is
higher than the image-based texture method; thus, the proposed method is superior to the motion JPEG
2000 method. If the image sequence is compressed as 3D data, the compression effectiveness is good
because of the information from the neighboring image.

3.5 Comparison between Different Compression Ratios

In this section, we describe results of compressing 12 images downloaded from the Photex Photometric
Image Database [53]. The target object has an anisotropic surface, which cannot be represented by the
Torrance-Sparrow model (Fig. 10 (a) (f)). In order to analyze the effectiveness of the wavelet transform
to the anisotropic surface, we set the geometrical shape of the target object as a completely flat plane.
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Figure 9: Comparison between motion JPEG 2000 method and image-based texture method: (a) Input
image, (b) result of motion JPEG 2000 method (compression ratio 48:1), (c) result of image-based
texture method (compression ratio 48:1).

Fig. 10 (b) (g), Fig. 10 (c) (h), and Fig. 10 (d) (i) are the results of our method where the compression
ratio is 73:1, 5.8:1, and 1.2:1, respectively.

Fig. 11 and Table 5 show the relationship between the PSNR of the rendering image and the compres-
sion ratio. The image quality becomes higher than 40 dB when the compression ratio is smaller than 4:1.
On the other hand, the image quality is less than 20 dB for the model-based appearance method, which
uses the Torrance-Sparrow model. Though the Torrance-Sparrow model can only represent an isotropic
surface, some reflection models such as the Ward model [75] can represent an anisotropic surface. Since
our framework is flexible, we can improve our system if we substitute the reflection model used in the
wavelet-texture method.

Table 5: The value of PSNR with different compression ratios.

Model-based Input
appearance Wavelet-texture data

Compression ratio ∞ 474.0:1 197.8:1 73.2:1 24.3:1 8.5:1 5.8:1 3.8:1 2.3:1 1.2:1 1
PSNR [dB] 18.2 20.7 22.3 24.7 28.3 35.4 38.8 41.7 45.2 51.0 ∞

3.6 Comparison between Different Number of Input Images

In this section, we describe results of compressing simulational images calculated by the Ward model,
which can represent an anisotropic reflection. We set 0.1 for the surface roughness in the x-axis, and 0.2
for that in the y-axis. The input images are shown in Fig. 12 (a). In this section, we discuss the results
when we change the number of input images; thus, we only rendered the specular reflection, since it is
well-known that the diffuse reflection can be expressed from only three images [61]. First, we estimated
the parameters of the Torrance-Sparrow model, and rendered the images from the estimated parameters
(Fig. 12 (b)). Next, we calculated the difference between the input image and the rendered image, and
compressed it by wavelet transform. We rendered the images by the wavelet-texture method (Fig. 12 (c)
(d)). For comparison, we also show the results of the image-based texture method in Fig. 12 (e).
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Figure 10: Rendered images for different compression ratios.
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Figure 11: The relationship between the PSNR of the rendering image and the rate. In this experiment,
we use only the difference images to evaluate the rate, and the reflection parameters are not used to
calculate it. The rate is calculated by the number of wavelet coefficients divided by the number of
pixels.

Table 6: The PSNR of anisotropic sphere. The PSNR of model-based appearance was 31.0. The actual
compression ratio is used for experiment.

Compression ratio 9.9:1 9.6:1 9.4:1 5.9:1 4.4:1 3.1:1 2.3:1 2.2:1 2.1:1
PSNR [dB] Image-based texture 35.9 36.0 36.1 36.9 36.9 36.9 36.9 36.9 36.9

Wavelet-texture 38.6 38.7 38.7 39.0 39.0 39.0 39.0 39.0 39.0

Table 7: The PSNR of diffuse texture. The PSNR of model-based appearance was 30.4. The actual
compression ratio is used for experiment.

Compression ratio 1.2:1 1.5:1 2.0:1 2.4:1 2.6:1 4.6:1 5.7:1 6.0:1 8.7:1 8.8:1 10.4:1 31.3:1 42.6:1
PSNR [dB] Image-based texture 59.3 58.9 58.9 58.9 58.9 58.9 58.9 58.9 58.7 58.7 57.6 42.5 38.7

Wavelet-texture 58.9 58.9 58.9 58.9 58.9 58.9 58.9 58.9 58.9 58.9 58.9 56.3 54.2
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Figure 12: Rendered images for different number of input images: (a) Input images, (b) rendered images
by model-based appearance method (PSNR 31.0), (c) rendered images by wavelet-texture method using
32 input images (PSNR 51.2), (d) rendered images by wavelet-texture method using 16 input images
(PSNR 39.0), and (e) rendered images by image-based texture method using 16 input images (PSNR
36.9). The images marked with a circle (No. 10, No. 12, and No. 14) were used for (c), and the images
marked with a rectangle (No. 10 and No. 14) were used for (d) and (e).

19



Rate ( 100)

PSNR

0
35 dB

40 dB

20 40 60 80 100

Figure 13: The relationship between the PSNR of the rendering image and the rate for the specular
sphere. The result of image-based texture method is represented by diamond mark, and the result of
wavelet-texture method is represented by triangle mark. The actual compression ratio is used for exper-
iment.

For the results shown in Fig. 12 (d) and Fig. 12 (e), we used 16 images marked with a rectangle in
Fig. 12. Note that the images are well rendered by the wavelet-texture method, while they are not well
rendered by the image-based texture method. For the result shown in Fig. 12 (c), we used 32 images
marked with a circle in Fig. 12. The larger the number of input images is, the higher the quality of
output images become. Note that the images without the circle are also well rendered though these are
not used as the inputs. Fig. 12 shows the results with different data size, and the detailed results with
same data size is shown in Table 6 and Fig. 13. In this experiment, the following data size is used. We
used 16 images under different light sources. The wavelet transform is applied to the image whose size
is 1024 × 1024. The wavelet coefficients are represented by 4-byte integer value. We represented the
reflectance of specular reflection parameters with a 1-byte non-negative integer value and the surface
roughness of specular reflection model with a 4-byte real number.

Diffuse reflection can be expressed only from three images [61]; thus, any techniques such as PCA,
Fourier transform, or wavelet transform can compress the input data to the data size that is same as that
of three images. However, we need all of the input images in order to express specular reflections [57].
Since specular reflection moves spatially, a photometric approach such as PCA-based methods break
down, while a geometric approach such as morphing [42] is effective. Wavelet transform can also
express the spatial variation of specular reflection. Suppose that the number of pixels is P and the
number of images is N , so the whole size of the input data is NP . PCA compresses the input data to
kP + k by only using k eigenvectors and k eigenvalues. If we want to compress specular reflection, we
need NP + N data if we use PCA. The specular reflection occurs in a small area in each image. If we
denote the number of pixels of specular reflection as s, the total data to store will be sN at most, if we

20



use wavelet transform. For example, when N = 32, P = 1024 × 1024, s = 16 × 16, the compression
ratios of PCA and wavelet transform are 1.0:1 and 4096:1, respectively.

The linear interpolation between two views is implemented for the wavelet-texture method (Fig. 12
(c) (d)) and the image-based texture method (Fig. 12 (e)). Therefore, the ghosting effect, the blending
effect of specular reflection, appears in Fig. 12 (e). In our method (Fig. 12 (c) (d)), the ghosting effect
is unrecognizable thanks to the hybrid approach of image-based texture method and model-based ap-
pearance method. In this experiment, we sampled the images in one direction; thus, we interpolated the
image from the nearest two images. When we sample 2D BRDF, 3D BRDF, or 4D BRDF, we can inter-
polate the image from the nearest 4-point square, 8-point cube, or 16-point hypercube. Mathematically,
we only need to search the nearest 3-point triangle, 4-point tetrahedron, or 5-point pentachoron for 2D,
3D, or 4D BRDF. However, we sample the data with even intervals; thus, interpolating using hypercubes
is useful for implementation. But if we do not sample the data with constant intervals, we have to search
the nearest points of the simplex.

3.7 Performance for 4D BRDF

In this section, we corroborate that our method can be also applied to 4D BRDF, since the wavelet can be
applied to a tensor of any rank. Since our experimental setup shown in Fig. 2 cannot capture the whole
4D BRDF, we generated input images by computer. The target object has a reflection which obeys the
Oren-Nayar model [51], which cannot be represented by the Lambertian model, since the appearance
of Lambert surface does not change when the viewpoint changes though the appearance of Oren-Nayar
surface changes when the viewpoint changes. We set the surface roughness parameter of Oren-Nayar
model as 1. The azimuth angle of the light source, the zenith angle of the light source, the azimuth
angle of the viewpoint, and the zenith angle of the viewpoint vary in 32 steps, 16 steps, 32 step, and 16
steps, respectively. We applied the algorithms to one triangle of the surface mesh whose texture looks
like a heart and whose size is 16 × 16. The wavelet-texture method is applied to rank 6 tensor whose
dimension is (32, 16, 32, 16, 16, 16). Fig. 14 (e) is the sequence of input images and Fig. 14 (a) (f) is
the result of model-based appearance method. Fig. 14 (d) (i), Fig. 14 (c) (h), and Fig. 14 (b) (g) are the
results of our method whose compression ratio are 180:1, 2800:1, and 200000:1, respectively. Though
the input data size is large, the appearance under different light and different viewpoint is correlated,
thus, the image quality does not degrade so much even if the compression ratio is large. The detailed
results with considering the size of the reflection parameters are shown in Table 7 and Fig. 15. In this
experiment, the following data size is used. We used 32 × 16 × 32 × 16 images under different light
sources and different viewpoints. The wavelet transform is applied to the image whose size is 16 × 16.
The wavelet coefficients are represented by 4-byte integer value. We represented the diffuse reflection
parameters with a 1-byte non-negative integer value.

4 Conclusion

We proposed a novel framework for rendering photorealistic images of real objects with a small amount
of data. By using the Daubechies wavelet, we compressed the difference image between the input
image and the image rendered by the Lambertian model and the Torrance-Sparrow model. The proposed
method is able to represent the correct surface reflection, which is important for photorealism, and is able
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Figure 14: Rendered images for different compression ratios.
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Figure 15: The relationship between the PSNR of the rendering image and the rate for the diffuse texture.
The triangle mark represents the result of wavelet-texture and the diamond mark represents the result of
image-based texture. The actual compression ratio is used for experiment.

to effectively compress large amounts of data. We are now planning to sample the images by rotating
the viewpoint and the light source in all directions in order to generate an arbitrary scene. Also, we are
planning to increase the image quality by either densely sampling the data or effectively interpolating the
data. The algorithm can represent the interreflection and self-shadow of the object by difference image,
and we are planning to verify this prospect.

Our framework measures the target object by laser range sensor in order to obtain its 3D geometry. The
laser range sensor can obtain more precise data than the photometric stereo method. We also decomposed
the reflection components by polarizers, and fit the reflection model. Estimating the specular reflection
parameter is usually less stable than estimating the diffuse reflection parameter; thus, we estimate each
reflection parameter separately in order to avoid the interference from the specular reflection component,
when estimating the diffuse reflection parameter. Consequently, our framework can express high-quality
images with a small amount of data. Many compression techniques for image-based rendering methods
[23, 26, 52] that do not use 3D geometry are already proposed; however, we believe that our framework
is one of the most useful techniques for compressing the object’s appearance when the 3D geometry of
the object is given.

Our method, which used the Lambertian model, the Torrance-Sparrow model, and the Daubechies
wavelet, produced better results than previous methods. Recently, more effective reflection models,
such as the Lafortune model or the He-Torrance-Sillion-Greenberg model, and more effective wavelets,
such as the Coiflet or the Symmlet, have been proposed year by year. The proposed framework has the
flexibility to easily upgrade the method by only substituting the compression software.

In this paper, we concentrated on the photometric problem; namely, the component that cannot be
represented by reflection models. However, the geometric problem still remains; namely, we should
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also store the information that cannot be represented by laser range sensor. In order to estimate a better
geometric model, we are planning to acquire the detailed surface normal for each triangle of the mesh
model as is proposed in the paper presented by Lensch et al. [24]. In addition, we are planning to express
the geometric data with a small number of parameters of implicit polynomial surface using the technique
proposed by Zheng et al. [77].
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A Detailed Implementation

A.1 Calibration between Camera and Laser Range Sensor

We measure a known object to calibrate the 2D image and the 3D range image. By using the camera
calibration method [71], we obtain the 4 × 4 matrix C, which transforms the coordinate system of the
laser range sensor to the coordinate system of the color camera. The alignment process transforms the
coordinate system of the laser range sensor to the coordinate system of the merged data of the target
object with the 4 × 4 matrix Ai, where i denotes each range image of the target object. The matrices C
and Ai are represented as follows. ⎛

⎜⎜⎜⎝ R t

0 0 0 1

⎞
⎟⎟⎟⎠ , (5)

where R represents a rotation matrix and t represents a translation vector. We use the 4×4 matrix CA−1
i

to transform the coordinate system of the merged data to the coordinate system of the color camera. This
procedure gives the correspondence between the 3D mesh model and the 2D color image.

A.2 Reflection Model

To differentiate diffuse reflection from specular reflection, we set linear polarizers in front of the camera
and the light source. We obtain two kinds of color images for each rotating angle: one is the maximum
intensity image when rotating the polarizer; the other is the minimum intensity image when rotating the
polarizer. We denote the intensity of the diffuse reflection component as Id, the intensity of the specular
reflection component as Is, the maximum intensity observed by the camera when rotating the polarizer
as Imax, and the minimum intensity observed when rotating the polarizer as Imin. Then, the relationship
between these intensities can be expressed in the following equations:

Imin =
1

2
Id , (6)

Imax =
1

2
Id + Is . (7)
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We use the following Lambertian model for the diffuse reflection model.

Id = Kd (N · L) = Kd cos θi . (8)

Here, Id represents the intensity of the diffuse reflection, Kd represents the reflectance (albedo) of the
diffuse reflection, N is a unit vector of the object surface normal, L is a unit vector of the light source
direction, and θi is the angle between the surface normal and the light source direction (Fig. 17). Kd also
includes the information about the light source.

One of the mathematical models of specular reflection is the Torrance-Sparrow model [70]. The
Torrance-Sparrow model for a point light source can be expressed as Eq. (9).

Is =
FGKs

cos θr

exp

(
− α2

2σ2

)
. (9)

Here, Is is the intensity of specular reflection,Ks is the reflectance of specular reflection, σ is the surface
roughness, θr is the angle between the surface normal and the view direction, and α is the angle between
the surface normal vector and the bisector of the view vector and light vector (Fig. 17). F is the Fresnel
coefficient, and G is the geometric attenuation factor. Ks includes the light source information. θr and
α are calculated by the following equations.

cos θr = N · V , (10)

cosα = N · H , (11)
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(d) further decomposition result.

H =
L + V

‖L + V‖ . (12)

Here, N, L, V, and H are the unit vector of the surface normal, the unit vector of the light source, the
unit vector of the view direction, and the unit vector of the bisector of the view direction and the light
source direction, respectively. In this paper, we use the following simple model to speed up the rendering
time.

Is = Ks exp

(
− α2

2σ2

)
. (13)

A.3 Wavelet Transform

In this section, we explain a multiresolution analysis by using the wavelet. Here we rewrite the top-
most level of the multiresolution representation f as f (0); i.e., f (0) = f . The decomposition of f (0) in
multiresolution representation up to the three level is expressed as follows.

f (0)(x, y, t) = g(1)(x, y, t) + g(2)(x, y, t) + g(3)(x, y, t) + f (3)(x, y, t) . (14)

A similar process goes to four or more levels. Here, the superscript (j) represents the level of the
resolution. f (j) is a linear sum of the so-called scaling function, and g(j) is a linear sum of the wavelet
function.

f (j)(x, y, t) =
∑
kx

∑
ky

∑
kt

s
(j)
kx,ky,kt

ϕ
(j)
kx,ky,kt

(x, y, t) (15)

g(j)(x, y, t) =
∑
kx

∑
ky

∑
kt

w
(j)
kx,ky,kt

ψ
(j)
kx,ky,kt

(x, y, t) . (16)

Here, s is a scaling coefficient and w is a wavelet coefficient.

s
(j)
kx,ky,kt

=
∫∫∫ +∞

−∞
f (j)(x, y, t)ϕ

(j)
kx,ky,kt

(x, y, t)dxdydt (17)

w
(j)
kx,ky,kt

=
∫∫∫ +∞

−∞
f (j)(x, y, t)ψ

(j)
kx,ky,kt

(x, y, t)dxdydt, (18)

where ϕ̄ and ψ̄ are the complex conjugates of ϕ and ψ, respectively. However, ϕ and ψ are real numbers
for the Daubechies wavelet; thus, ϕ̄ = ϕ and ψ̄ = ψ. The above example is of three-dimensional data;
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Figure 19: Daubechies (N=2) wavelet: (a) Scaling function, (b) wavelet function.

however, a similar explanation applies to four- or more dimensional data. Though the coefficients can
be calculated by Eq. (17) and Eq. (18), we actually compute them by using a so-called Fast Wavelet
Transform [34], which we will explain in Section A.3.1 and Section A.3.2. After decomposing f (0), we
store only the number of the highest absolute coefficients, in order to reduce the data size. The scaling
function ϕ(0)

0 (x) and the wavelet function ψ(0)
0 (x) for a one-dimensional Daubechies N=2 wavelet are

shown in Fig. 19.

A.3.1 Compression by Daubechies Wavelet

In this example, we suppose that we rotated the object in one dimension, which we represent as the t-
axis; thus, the whole image data are three-dimensional data, f(x, y, t). Next, we represent the data with
multiresolution by using the wavelet. Mallat [34] approximated the scaling coefficient of the topmost
level multiresolution representation s(0) as f ; i.e., s(0) = f . From the scaling coefficient of the higher
level resolution, the scaling coefficient and the wavelet coefficient of the next lower resolution can be
calculated by the following formula.

s
(j+1)
kx,ky,kt

=
∑
nx

∑
ny

∑
nt

pnx−2kx pny−2ky pnt−2kt s
(j)
nx,ny,nt

(19)

w
(j+1),HLL
kx,ky,kt

=
∑
nx

∑
ny

∑
nt

qnx−2kx pny−2ky pnt−2kt s
(j)
nx,ny,nt

(20)

w
(j+1),LHL
kx,ky,kt

=
∑
nx

∑
ny

∑
nt

pnx−2kx qny−2ky pnt−2kt s
(j)
nx,ny,nt

(21)

w
(j+1),LLH
kx,ky,kt

=
∑
nx

∑
ny

∑
nt

pnx−2kx pny−2ky qnt−2kt s
(j)
nx,ny,nt

(22)

w
(j+1),HHL
kx,ky,kt

=
∑
nx

∑
ny

∑
nt

qnx−2kx qny−2ky pnt−2kt s
(j)
nx,ny,nt

(23)

w
(j+1),HLH
kx,ky,kt

=
∑
nx

∑
ny

∑
nt

qnx−2kx pny−2ky qnt−2kt s
(j)
nx,ny,nt

(24)

w
(j+1),LHH
kx,ky,kt

=
∑
nx

∑
ny

∑
nt

pnx−2kx qny−2ky qnt−2kt s
(j)
nx,ny,nt

(25)

w
(j+1),HHH
kx,ky,kt

=
∑
nx

∑
ny

∑
nt

qnx−2kx qny−2ky qnt−2kt s
(j)
nx,ny,nt

, (26)

where pk and qk are defined as follows for Daubechies N=2 wavelet.

p0 = 0.4829629131445341 (27)
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Figure 20: Decomposing the higher resolution image into lower resolution images: (a) 1D wavelet, (b)
2D wavelet, (c) 3D wavelet.

p1 = 0.8365163037378077 (28)

p2 = 0.2241438680420134 (29)

p3 = −0.1294095225512603 (30)

q−2 = −0.1294095225512603 (31)

q−1 = −0.2241438680420134 (32)

q0 = 0.8365163037378077 (33)

q1 = −0.4829629131445341 . (34)

Note that pk = 0 and qk = 0 for other k. p and q are real numbers for Daubechies wavelet; thus,
p̄ = p and q̄ = q. The above mathematical expressions are of three-dimensional data; however, similar
formulae are used for four- or more dimensional data. The wavelet transform can be applied for the data
whose size for each axis is powers of two. If the size is not powers of two, we fill the data with zero
values to make the size be powers of two. The above decomposition is illustrated in Fig. 20.

A.3.2 Decompression by Inverse Daubechies Wavelet

Now we calculate the image of the topmost level resolution s(0) = f . From the scaling coefficient and
the wavelet coefficient of the lower level resolution, the scaling coefficient of the next higher resolution
can be calculated by the following formula.

s(j)
nx,ny,nt

=
∑
kx

∑
ky

∑
kt

[
pnx−2kx pny−2ky pnt−2kt s

(j+1)
kx,ky,kt

+ qnx−2kx pny−2ky pnt−2kt w
(j+1),HLL
kx,ky,kt

+ pnx−2kx qny−2ky pnt−2kt w
(j+1),LHL
kx,ky,kt

+ pnx−2kx pny−2ky qnt−2kt w
(j+1),LLH
kx,ky,kt

+ qnx−2kx qny−2ky pnt−2kt w
(j+1),HHL
kx,ky,kt

+ qnx−2kx pny−2ky qnt−2kt w
(j+1),HLH
kx,ky,kt

34



+ pnx−2kx qny−2ky qnt−2kt w
(j+1),LHH
kx,ky,kt

+ qnx−2kx qny−2ky qnt−2kt w
(j+1),HHH
kx,ky,kt

]
(35)

This procedure is just the opposite of Fig. 20.

35


