
Image Enhancement for Dichromats by Weighting
the Color Difference Between Neighboring Pixels

Daisuke Miyazaki
Faculty of Information Science

Hiroshima City University
Hiroshima 731-3194, Japan
miyazaki@hiroshima-cu.ac.jp

Takuro Namiki1
Faculty of Information Science

Hiroshima City University
Hiroshima 731-3194, Japan
e20144@e.hiroshima-cu.ac.jp

Abstract—Dichromats recognize colors using two out of three
cone cells; L, M, and S. To extend the ability of dichromats to
recognize the color difference, we propose a method to expand
the color difference when observed by dichromats. We analyze
the color between the neighboring pixels in chromaticity space. In
order to exaggerate the neighboring pixels as much as possible,
we set the initial value randomly for iterative updation. On the
other hand, in order to preserve the naturalness of the detailed
structure, we weight parameters adequately to the cost function.
Our method fully enhances the color difference between different
color region so that the dichromats recognizes the color difference
between neighboring pixels.

Index Terms—color blindness, color vision deficiency, dichro-
mat, recoloring, edge exaggeration

I. INTRODUCTION

Enhancing the visibility of color image for dichromats is
an important research field [1]–[13]. Most methods first map
all pixel colors in color space such as RGB, HSV, XYZ,
LMS, L*a*b*, etc., and next, they deform the color space
or deform the clusters of mapped points so that it satisfies the
required condition. On the other hand, our method analyzes
the color difference between neighboring pixels. Namely, our
method analyzes not in color space but in image space (i.e.,
pixel coordinates). Also, unlike Chen [14], we do not preserve
the color difference between two pixels but we increase
the color difference as much as possible. We formulate the
Poisson equation so that the relative color difference between
neighboring pixels will be preserved.

Some methods [15]–[17] also solve the Poisson equation to
enhance the visibility of dichromats. These methods [15], [16]
form the Poisson equation in RGB intensity space, while our
method forms in xy-chromaticity space. Existing method [17]
also forms the Poisson equation in xy-choromaticity space.
However, unlike [17], we set random values for initial values
of iteration process in order to exaggerate the color difference
between neighboring pixels as much as possible. On the other
hand, our cost function preserves the detailed color difference
between neighboring pixels. However, we multiply a weight
parameter to each term of cost function for each pixel so that
the color difference becomes large at the boundary where there
is a large color gap.
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Fig. 1. Definition of hue of (a) trichromats, (b) protanopia, and (c) deutera-
nopia.

II. COLOR ENHANCEMENT FOR DICHROMAT

In xy-diagram calcualted from CIE-XYZ value, the white
color is placed in (x, y) = (0.33, 0.33) for trichromats. First,
the hue α of trichromats is defined as an angle defined in xy-
plane (Fig. 1 (a)). The trichromatic hue α is defined as an
angle around the white point (x, y) = (0.33, 0.33).

The white point (the center of color confusion) of protanopia
is (x, y) = (0.747, 0.253) and that of deuteranopia is (x, y) =
(1.000, 0.000) [18]. The hue β is defined as the angle around
these white points [6].

The vector a from the white point (1/3, 1/3) of xy chro-
maticity to the chromaticity of image pixel is represented as
Eq. (1).

a(u, v) =

 x̃(u, v)− 0.33
ỹ(u, v)− 0.33

0

 . (1)

Here, we use (u, v) for representing the x and y components
of pixel position represented in Euclidean coordinates with x
and y axes.

We deonte the 4-neighbor pixel position as (u+∆v, u+∆v),
where the integer values ∆u and ∆v obey |∆u|+ |∆v| = 1.
The color vectors of neighboring pixels are also calculated as
Eq. (2).

ã(u+∆u, v+∆v) =

 x̃(u+∆u, v +∆v)− 0.33
ỹ(u+∆u, v +∆v)− 0.33

0

 . (2)



We normalize these vectors and denote them as â(u, v) and
â(u+∆u, v+∆v). We denote the cross product of these two
vectors as a.

a(u+∆u, v +∆v) = â(u+∆u, v +∆v)× â(u, v) . (3)

Calculating the arcsine of a results in the signed angle between
â(u + ∆u, v + ∆v) and â(u, v). We denote this angle as
∆α(u+∆u, v +∆v).

∆α(u+∆u, v +∆v) = sin−1(a(u+∆u, v +∆v)) . (4)

The difference of hue angle β between neighboring pixels
should be proportional to the difference of hue angle α be-
tween neighboring pixels. Namely, the Laplacian of β should
be the same as the Laplacian of α, scaled with a certain
constant value.

△β(u, v) = △α(u, v) . (5)

Eq. (5) is called Poisson equation. The discretized representa-
tion of Eq. (5) is represented as follows.

β(u, v)− 1

4
β(u− 1, v)− 1

4
β(u+ 1, v)

−1

4
β(u, v − 1)− 1

4
β(u, v + 1) =

1

4
∆α(u− 1, v) +

1

4
∆α(u+ 1, v)

+
1

4
∆α(u, v − 1) +

1

4
∆α(u, v + 1) . (6)

The initial value of the hue angle β0 is set to be a random
number between -10 and 10. The number of iterations is
denoted as k. By setting the initial value to a random number,
the initial values of adjacent pixels become different colors.
At the final stage, the colors of different color regions become
as different as possible.

βk(u, v) = w1(u, v)β
k
1 (u, v) + (1− w1(u, v))β

k
2 (u, v). (7)

βk
1 (u, v) = βk−1(u, v) . (8)

βk
2 (u, v) =

1

4
{

w2(u, v;u− 1, v)(βk−1(u− 1, v) + ∆α(u, v;u− 1, v))

+w2(u, v;u+ 1, v)(βk−1(u+ 1, v) + ∆α(u, v;u+ 1, v))

+w2(u, v;u, v − 1)(βk−1(u, v − 1) + ∆α(u, v;u, v − 1))

+w2(u, v;u, v + 1)(βk−1(u, v + 1) + ∆α(u, v;u, v + 1))

+(1− w2(u, v;u− 1, v))βk
3 (u, v;u− 1, v)

+(1− w2(u, v;u+ 1, v))βk
3 (u, v;u+ 1, v)

+(1− w2(u, v;u, v − 1))βk
3 (u, v;u, v − 1)

+(1− w2(u, v;u, v + 1))βk
3 (u, v;u, v + 1)} . (9)

Fig. 2. Example of the calculation: (a) Ignoring dark pixels, (b) recovering
the color difference, and (c) exaggerating the color difference.

βk
3 (u, v;u− 1, v) = βk−1(u− 1, v)

+w3(k)(β
k−1(u, v)− βk−1(u− 1, v)) . (10)

βk
3 (u, v;u+ 1, v) = βk−1(u+ 1, v)

+w3(k)(β
k−1(u, v)− βk−1(u+ 1, v)) . (11)

βk
3 (u, v;u, v − 1) = βk−1(u, v − 1)

+w3(k)(β
k−1(u, v)− βk−1(u, v − 1)) . (12)

βk
3 (u, v;u, v + 1) = βk−1(u, v + 1)

+w3(k)(β
k−1(u, v)− βk−1(u, v + 1)) . (13)

Each term of this equation is explained below.
Eq. (8) is used for pixels whose hue remain unchanged. If

the pixel brightness is dark, the hue value is not reliable and
should not be updated. Therefore, we use a weight to Eq. (7)
that is calculated from the image brightness. As usual, we
calculate the brightness I of the pixel (u, v) using Eq. (14)
from RGB value.

I(u, v) = 0.299R(u, v)+0.587G(u, v)+0.114B(u, v) . (14)

Weight w1 is used to ignore dark pixels. Eq. (15) calculates
the weight w1 from the parameter m1. An example of this
effect is shown in Fig. 2 (a).

w1(u, v) = e−m1(I(u,v))
2

. (15)

The darker the pixel is, the larger w1 is, and the brighter the
pixel is, the smaller w1 is.

Eq. (9) is the Poisson equation (Eq. (5)) used to preserve
the color difference between neighboring pixels. The weight
w2 is used to increase the large color changes, while leaving
subtle color changes. Eq. (16) calculates the weight w2 from
the parameter m2. The larger w2 is, the more the original color
difference is preserved.

w2(u, v) = e−m2(∆α(u,v))2 . (16)

An example of the color difference between a pixel (u, v) and
its right neighbor is shown in the Fig. 2 (b).

In the early stage of iteration, the large color changes
are made larger, while in the later stage of iteration, the
subtle color changes are preserved (Eq. (10)–(13)). Eq. (17)
calculates the weight w3 from the parameter m3. Here, m3



Fig. 3. Example of the calculation that reduce the noise and exaggerate the
color boundary.

must be greater than 1 and close to 1. An example of this
effect is shown in Fig. 2 (c).

w3(k) = mkmax−k
3 . (17)

Here, the maximum number of iterations is denoted as kmax.
At the beginning of the iteration, w3 is increased in order
to change the hue angle β faster. However, if the hue angle
changes too much, it diverges. Once the color changes to some
extent, the amount of change is suppressed to stabilize the
behavior. Therefore, w3 is reduced for each iteration. Hue
angle will not be changed when w3 = 1. If w3 > 1, the
current color difference becomes w3 times larger. When w3

is large, the convergence speed becomes high since the hue
angle changes drastically. When w3 is small, the change of the
hue angle becomes small, and the hue angle converges. This
is because βk−1(u, v) − βk−1(u + ∆u, v + ∆v) is the color
difference in the current loop.

The weights w1, w2, w3 calculated from the parameters
m1,m2,m3 affect the final result. An example of the behavior
of the proposed method is shown in Fig. 3. We iterate the
computation (Eq. (7)) for enough number.

III. EXPERIMENT

We applied our method to Fig. 4 (a). Fig. 4 (b) shows that
the left doubled square is recognized as yellow and the right
doubled square is recognized as blue. As is shown in Fig. 4 (c),
our method uses both yellow and blue for both left and right
squares. Both inner square and outer square are represented by
different color so that dicrhomats can distinguish the boundary
of each square.

Fig. 5 shows the result of our method applied to natural
image. Input image (Fig. 5 (a)) includes red and green leaves,
which are difficult to distinguish (Fig. 5 (b)). We iteratively
(Fig. 5 (c)(d)(e)) update the hue. Final result (Fig. 5 (e)) shows
that the same region is colored with same color, while the
different regions are colored with different color.

Our results have higher color difference that use yellow and
blue as much as possible. Our method has high performance

Fig. 4. Result of the proposed method applied to artificially generated image:
(a) Input image, (b) protanopia view of input image, and (c) protanopia view
of output image.

to exaggerate the color difference locally. On the other hand,
our method paints the same color region with the same color.

IV. CONCLUSION

In this paper, we have proposed a method that enhances the
visibility of dichromats. Our method converts the color of an
image so that the image will be clear for dichromats.

We have formulated the color difference of trichromat as a
Poisson equation and solved it to preserve the color difference
which can also be perceived by dichromats. The Poisson
equation formulated in chromaticity space exaggerates the
color difference of neighboring pixels, and at the same time, it
preserves the chromaticity difference of trichromats. Since we
set the initial value as random numbers, the color difference
between neighboring pixels become as large as possible. Our
results show that the image is represented by blue and yellow
so that the color difference is stretched as much as possible.
Also, our results show that the local region with same input
color becomes a region with same output color, which means
that our method preserves the naturalness of the image locally.

The disadvantage of our method is the parameter tuning
problem, so our future work is to find better cost function.
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