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Abstract: One of the main problems faced by the photometric stereo method is that several1

measurements are required, as this method needs illumination from light sources from different2

directions. A solution to this problem is the color photometric stereo method, which conducts3

one-shot measurements by simultaneously illuminating lights of different wavelengths. However,4

the classic color photometric stereo method only allows measurements of white objects, while a5

surface-normal estimation of a multicolored object using this method is theoretically impossible.6

Therefore, it is necessary to add some constraints to estimate the surface normal of a multicolored7

object using the framework of the color photometric stereo method. In this study, a median filter8

is employed as the constraint condition of albedo, and the surface normal of occluding boundary9

is employed as the constraint condition of surface normal. By employing a median filter as the10

constraint condition, the smooth distribution of the albedo and normal is calculated while the sharp11

features at the boundary of different albedos and normals are preserved. The surface normal at12

occluding boundary is propagated into the inner part of object region, and forms the abstract shape13

of the object. Such surface normal gives a great clue to be used as an initial guess to the surface14

normal. To demonstrate the effectiveness of this study, a measurement device that can realize the15

multispectral photometric stereo method with seven colors is employed instead of the classic color16

photometric stereo method with three colors.17

Keywords: photometric stereo; color photometric stereo; multispectral imaging18

1. Introduction19

To reproduce a detailed surface shape, normal information is necessary. To obtain this information,20

the photometric stereo method was proposed, which estimates the normal by transitioning the21

brightness levels of several pictures by changing the direction of the light source. However, as22

it requires multiple photoshoots, the photometric stereo method is not suitable for modeling a moving23

object. To measure the shape of a moving object, the color photometric stereo method, which employs24

several colored light sources, was developed. This method involves placing light sources of red, green,25

and blue colors in three different directions, which simultaneously illuminate the target object. This26

paper proposes a technique that employs some constraints so that it can be applied to colored objects,27

which is impossible for conventional color photometric stereo. Unlike the common color photometric28

stereo method, we use seven narrow-band lights with different peak wavelengths while observing the29

target object with a seven-band multispectral camera.30
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2. Related work31

The photometric stereo method [31,35] estimates the normal of the surface of an object by32

illuminating the object and analyzing the resulting shadings on the object’s surface. In this method,33

light is illuminated on the object from one white parallel light source (an infinity point light source)34

to obtain a picture. Then, two more pictures are captured with different light source directions. In35

other words, it requires capturing three pictures with different light source directions. Therefore, it is36

impossible to measure a dynamic object. This problem can be resolved using the color photometric37

stereo method. In this method, lights are simultaneously illuminated from red, green, and blue38

light sources, and one picture photographed with an RGB color camera is captured. Such one-shot39

photograph enables the measurement of a dynamic object.40

The color photometric stereo method [9,21,36] (also known as shape-from-color) was developed41

in the 1990s. Since then, various studies [1,4–8,12,14,15,18,20–22,25,29,30,33,34] have been conducted42

in this regard. However, many problems are inherent in the color photometric stereo method. Many43

researchers in the past have struggled with this method, and even till recently, it has been an ongoing44

problem. The principle problem of the color photometric stereo method is the fact that it can only be45

used with white objects. This is an inevitable problem as long as lights are illuminated from three46

colored light sources to estimate the surface normal.47

Recently, various techniques have been proposed to apply the color photometric stereo method48

to multicolored objects. Roubtsova et al. [30] applied the color photometric stereo method to objects49

with arbitrary BRDF (bidirectional reflectance distribution function) by incorporating the Helmholtz50

Stereo method. However, the principle of this method does not allow for real-time measurement.51

Therefore, an optical flow is required to measure a dynamic object. Kim et al. [20] and Gotardo et52

al. [13] also tracked dynamic objects using optical flow, and estimated the surface shape of objects53

by utilizing several images taken at different times. Fyffe et al. [12] proposed a color photometric54

stereo method that employs six band cameras and three white color sources. All three light sources55

used in their method appear white to the human eye. However, all of them possess different spectral56

distributions. Furthermore, this method pre-measures the reflectance of various objects to prepare a57

database, and calculated four bases. Using this technique, it is possible to obtain an analytic solution,58

as there are four unknown numbers in relation to albedo (four base coefficients) and two in relation59

to the normal (because the three-dimensional vector is normalized), and six equations are obtainable.60

Anderson et al. [1] estimated the object color using the normal of multi-view stereo. However, owing61

to the low accuracy of the normal of multi-view stereo, they improved the estimation accuracy of62

object color based on the hypothesis that an object is composed of a limited number of colors. Their63

technique incorporates the framework of region segmentation, where the number of the regions is64

automatically determined based on the Bayesian information criterion. Chakrabarti et al. [5] calculated65

the candidates of object color by approximating the shape inside the patch of neighboring areas using66

a polynomial. They calculated the histogram of the object color candidates, chose only the limited67

number of colors that gained most votes, and evaluated the normal by postulating that the object is68

composed of these limited number of colors. Jiao et al. [18] divided a picture into super pixel regions69

and estimated the normal by postulating that the object color inside each region is uniform.70

In this paper, the problem faced by the color photometric stereo method is solved using a different71

approach from those used in previous studies. Our proposed technique employs a median filter as the72

constraint condition of the albedo and surface normal. We also use occluding boundary constraint for73

surface normal. Thanks to this constraint, we have a good estimate from the initial state of surface74

normal, which results in robust estimation.75

The techniques of Gotardo et al. [13], Kim et al. [20], and Roubtsova et al. [30] need to employ76

optical flow to measure a dynamic object, while the technique of Fyffe et al. [12] requires a reflectance77

database to be prepared prior to the measurement. Our proposed technique does not require a shape78

obtained from other sensors such as multi-view stereo or laser sensor, unlike the technique of Anderson79

et al. [1] Moreover, unlike the techniques of Chakrabarti et al. [5] and Jiao et al., [18] our proposed80
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method does not require region segmentation. Previous color photometric stereo methods used three81

lights with red, green, and blue colors and observed the object with an RGB color camera. In our82

study, seven lights with different wavelengths are used to illuminate the object, which is then observed83

by a seven-band multispectral camera. This paper demonstrates that multi-spectral cameras and84

multi-spectral light sources are also effective for the color photometric stereo method.85

3. Multispectral color photometric stereo method86

3.1. Image formulation87

A photometric stereo method that employs independent colored light is called the color88

photometric stereo method. A characteristic of this method is that it enables the estimation of the89

surface normal with one photoshoot. The widespread color photometric stereo method is conducted90

with three types of colored lights. While the conventional photometric stereo method results in several91

grayscale images, the color photometric stereo method results in a multi-spectral image.92

Although the fundamental theory is given in several number of literatures [23,26], we briefly93

explain the formulation of the problem. The spectral sensitivity of a camera is denoted as Qc(λ),94

the spectral distribution of the light source is E(λ), and the spectral reflectance of the object is S(λ).95

Moreover, c denotes the channel. In this case, the brightness obtained from each channel of the camera96

can be attained from Equation (1).97

Ic =
∫ ∞

0
Qc(λ)E(λ)S(λ)dλ . (1)

Suppose that we use single light E(λ) whose spectral distribution can be represented as a delta
function δ(·) whose peak wavelength is λc.

E(λ) = ecδ(λ− λc) , (2)

where ec represents the brightness of the light. Suppose that the channel c is only sensitive to the
wavelength λc, and suppose that other channels cannot detect the wavelength λc.

Qc(λ)E(λ) = qcecδ(λ− λc) , (3)

where qc represents the sensitivity at wavelength λc. Suppose that we lit a single parallel light source
(infinite-far point light source) whose spectral distribution is represented as delta function and its peak
wavelength is λc, the pixel brightness Ic can be represented as follows using the formulation that the
diffuse reflection is represented as S(λc) = s̃c max(n · lc, 0).

Ic = qcec s̃c max(n · lc, 0) , (4)

where s̃c represents the reflectance. n is a normal vector and lc is the light source direction vector of98

channel c. Denoting as Ac = qcec s̃c, Equation (4) becomes as follows.99

Ic = Ac max(n · lc, 0) . (5)

Hereinafter, we call Ac albedo. Note that the camera sensitivity and light source brightness are included100

in Ac.101

As shown in Fig. 1, this study conducts a photoshoot of a multicolored object using seven channels102

(Fig. 2). Following Equation (5), the brightness is obtained from this photoshoot as follows.103
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Figure 1. Conceptual explanation of multispectral color photometric stereo. Target object is illuminated
by multiple light sources whose wavelengths are different. One image is taken using multispectral
camera.

I0 = A0 max(n · l0, 0) ,

I1 = A1 max(n · l1, 0) ,
...

I6 = A6 max(n · l6, 0) . (6)

The surface normal n is a 3D vector; however, the degree-of-freedom is two because it is104

constrained to be a unit vector (such constraint reduces one degree-of-freedom). Albedo Ac is105

represented by seven parameters. There are seven equations, as shown in Equation (6), and nine106

unknown parameters (A0, A1, . . . , A6, nx, ny, nz, s.t., n2
x + n2

y + n2
z = 1, namely seven for albedo and107

two for surface normal). Therefore, color photometric stereo, without any assumption or constraint, is108

an ill-posed problem.109

The most commonly used assumption is to limit the color of the target objects to white (A0 =

A1 = · · · = A6). If we set s = Acn and if we ignore the shadow, the surface normal s (scaled with
albedo) can be directly solved.

 s

 =


l>0
l>1
...

l>6


+

I0

I1
...
I6

 . (7)

As is shown above, the color photometric stereo for white objects, or in other words, the conventional110

photometric stereo can directly solve the surface normal, without iterative optimization nor additional111

constraints such as smoothness constraints. However, this paper analyzes the methods with112

multi-colored objects. Therefore, we add smoothness constraints and iteratively solved the problem113

formulated as Equation (6).114
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Figure 2. Explanation of multi-channel image: (a) Grayscale image with single channel, (b) RGB color
image with 3 channels, and (c) multispectral image with 7 channels.

The proposed technique estimates the surface normal through an iteration process. The cost115

function that is minimized through the iteration process is explained in Section 3.2. Each term of the116

cost function is explained in Sections 3.3, 3.4, 3.5, and 3.6. The initial value required in the iteration117

process is explained in Section 3.6 and Section 3.7, and the update rule for each iteration is shown118

in Section 3.8. Detection of specular reflection is explained in Section 3.9. A method to integrate the119

surface normal to obtain the geometrical structure of the object surface is shown in Section 3.10, and120

Section 3.11 explains how to cancel the channel crosstalk.121

3.2. Cost function122

The cost function
∫∫

Fdxdy is expressed through the following four terms:123

F =
∫ ∫

(x,y)∈P\∂P
F1(n(x, y), A(x, y), I(x, y), L)dxdy

+
∫ ∫

(x,y)∈P\∂P
F2(n(x, y))dxdy

+K2

∫ ∫
(x,y)∈P\∂P

F3(A(x, y))dxdy

+
∫ ∫

(x,y)∈∂P
F4(n(x, y))dxdy . (8)

Equation (8) is minimized under the condition that surface normal n should be an124

unit vector, ‖n‖ = 1. Here, A = (A0(x, y), A1(x, y), · · · , A6(x, y))>, L = (l0, l1,125

· · · , l6)
>, and I = (I0(x, y), I1(x, y), · · · , I6(x, y))T. K2 is the Lagrange multiplier. The area where126

the target object is observed is denoted as P , and the occluding boundary is denoted as ∂P . The first127

three terms F1, F2, and F3 are the soft constraints defined inside the object region P\∂P , and the fourth128

term F4 are the hard constraint defined at the occluding boundary ∂P . Orthographic projection is129

assumed in this paper for camera model.130

Following are the four terms of cost functions, where K11 and K12 are the Lagrange multipliers.131

F1 =
6

∑
c=0

(Ic(x, y)− Ac(x, y)max(lT
c n(x, y), 0))2 , (9)

F2 = K11

(∥∥∥∥∂n(x, y)
∂x

∥∥∥∥2

+

∥∥∥∥∂n(x, y)
∂y

∥∥∥∥2
)
+ K12

(∥∥∥∥∂n(x, y)
∂x

∥∥∥∥+ ∥∥∥∥∂n(x, y)
∂y

∥∥∥∥) , (10)

F3 =

∥∥∥∥∂A(x, y)
∂x

∥∥∥∥+ ∥∥∥∥∂A(x, y)
∂y

∥∥∥∥ , (11)

F4 = ||n(x, y)− nb(x, y)||2 . (12)
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Sections 3.3, 3.4, 3.5, and 3.6 explain F1, F2, F3, and F4, respectively. F1 expresses the residual132

of Lambertian reflectance and the input image brightness. I is the input image brightness, A is the133

albedo, l is the light source direction, and n is the surface normal. Here, c is the index that identifies134

the channel, and max(l>n, 0) represents the shading. F2 is the smoothing term of the surface normal,135

and indicates that the gradient of the surface normal should be small; F3 is the smoothing term of136

albedo, and indicates that the gradient of albedo should be small; and F4 is the constraint condition of137

the surface normal at the occluding boundary. The surface normal at the occluding boundary nb can138

be derived from differential geometry. F4 indicates that the surface normal at the occluding boundary139

should be equal to nb. The reason why F2 use both L1 norm and L2 norm is discussed in Section 3.4.140

As we will explain in Sections 3.3, 3.4, 3.5, and 3.6, we do not minimize Equation (8) at once but141

minimize F1, F2, F3, and F4 separately. Although we cannot mathematically prove that such piecewise142

minimization results in global minimum, it is empirically known that piecewise minimization make143

the cost function smaller through the iteration. Since Equation (8) is a non-linear equation with several144

number of constraints, convergence speed is low. On the other hand, our approach is robust, stable,145

and speedy since we can minimize the cost function with closed form solution as is shown in Sections146

3.3 and 3.6 (F1 and F4) and minimizing it with straightforward filtering as is shown in Sections 3.4 and147

3.5.148

Section 3.3 explains that F1 solely cannot solve the problem. In order to solve the problem, we149

have to add F2 or F3 as it will be explained in Section 3.4 and Section 3.5. The surface normal will150

be smooth if we add F2, and the albedo will be smooth if we add F3. If we add both F2 and F3, the151

surface normal and the albedo becomes relatively sharper than adding either F2 or F3. Since we want152

to suppress the surface normal and the albedo to be smooth, we add not only F2 and F3 but also F4.153

3.3. Determining surface normal and albedo154

If we ignore the influence of the shadow, the first term F1 shown in Equation (9) can be represented155

as Equation (13).156

F1 =
6

∑
c=0

(Ic(x, y)− Ac(x, y)(l>c n(x, y)))2 . (13)

The solution obtained by minimizing Equation (13) is expressed as Equation (14).157

Ic(x, y) = Ac(x, y)(l>c n(x, y)) . (14)

When albedos A0, A1, · · · , A6 are known, the surface normal n can be obtained by calculating the158

pseudo-inverse matrix L+ of matrix L, as shown in Equation (15).159

 nx

ny

nz

 =


lx0 ly0 lz0

lx1 ly1 lz1
...

lx6 ly6 lz6


+

I0(x, y)/(A0(x, y) + ε1)

I1(x, y)/(A1(x, y) + ε1)
...

I6(x, y)/(A6(x, y) + ε1)

 . (15)

Here, ε1 is a small positive constant introduced to prevent division-by-zero. As the surface normal160

n is expressed as a unit vector (‖n‖ = 1), it is normalized after calculating Equation (15). The unit161

vector n̂ of the surface normal n can be calculated by dividing its length ‖n‖ as n̂ = n/‖n‖.162

Shadow has a low brightness, and thus, thresholding the brightness results in detecting the163

shadow, as is shown in Section 3.9. As for the channel which is detected as a shadow using the164

procedure shown in Section 3.9, Equation (15) cannot be used for surface normal estimation. To avoid165

this, n is calculated by weighting the c’th row of L by a small value d in relation to channel c, which is166

a shadow. This situation is expressed as follows.167
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 nx

ny

nz

 =



lx0 ly0 lz0
...

...
...

lx,c−1 ly,c−1 lz,c−1

dlx,c dly,c dlz,c

lx,c+1 ly,c+1 lz,c+1
...

...
...

lx6 ly6 lz6



+

I0(x, y)/(A0(x, y) + ε1)
...

Ic−1(x, y)/(Ac−1(x, y) + ε1)

dIc(x, y)/(Ac(x, y) + ε1)

Ic+1(x, y)/(Ac+1(x, y) + ε1)
...

I6(x, y)/(A6(x, y) + ε1)


. (16)

As usual, the surface normal n is normalized after calculating Equation (16).168

When the surface normal is known, albedo can be calculated as shown in Equation (17) derived169

from Equation (14).170

Ac =
Ic

l>c n
. (17)

To prevent division-by-zero, Equation (17) is calculated when l>c n > ε2 holds, where ε2 is a small171

positive constant. In addition, if the pixel is detected as an outlier (Section 3.9), Equation (17) is also172

not calculated.173

There are seven constraint condition equations in Equation (14). The input brightness I0, I1, · · · , I6174

and the unit vector that expresses the light source directions l0, l1, · · · , l6 are known. Albedos175

A0, A1, · · · , A6 and normal vectors nx, ny, nz are unknown parameters. Because the 3D normal vector176

is conditioned to be the unit vector, its degree-of-freedom is two. Therefore, the total number of177

unknown parameters is nine, with seven albedos and two surface normal components. At this point,178

calculations are not possible because the number of the unknown numbers is larger than the number of179

equations. Thus, the smoothing of the surface normal, smoothing of albedos, and constraint condition180

of the surface normal at the occluding boundary are introduced to the cost function.181

3.4. Smoothness constraint for surface normal182

As explained in Section 3.3, surface normal and albedo cannot be calculated because there are183

too many unknowns. Therefore, the smoothing of the surface normal is conducted as a constraint184

condition. The second term F2 of cost function F, which expresses the smoothing term of the normal, is185

expressed as Equation (10).186

The discretization of the first term of Equation (10) results in Equation (18) and that of the second187

term results in Equation (19).188

n(x, y) =
1
4
{n(x + 1, y) + n(x− 1, y) + n(x, y + 1) + n(x, y− 1)} , (18)

n(x, y) = median{n(x + 1, y), n(x− 1, y), n(x, y + 1), n(x, y− 1)} . (19)

In our software, Equation (18) is implemented as Gaussian filter, and Equation (19) is implemented189

as median filter. Convolving Equation (18) multiple times can be approximated by Gaussian filter.190

Therefore, instead of applying Equation (18) multiple times, we applied Gaussian filter once. We first191

apply median filter before Gaussian filter. After the surface normal is smoothed, it is normalized to be192

a unit vector.193

The fastest way to calculate Equation (19) is to calculate the median for each element as follows.194

nx = median{nx(x + 1, y), nx(x− 1, y), nx(x, y + 1), nx(x, y− 1)} ,

ny = median{ny(x + 1, y), ny(x− 1, y), ny(x, y + 1), ny(x, y− 1)} ,

nz = median{nz(x + 1, y), nz(x− 1, y), nz(x, y + 1), nz(x, y− 1)} . (20)
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After that the vector is normalized to be a unit vector. This procedure calculates the median in Euclidean195

distance, not in Riemannian distance (geodesic distance). However, this difference does not matter196

in practice since the surface is assumed to be smooth: Namely, since the angle between neighboring197

pixels is small, the Euclidean distance of two vectors can be approximated as the Riemannian distance.198

In order to keep the sharp feature of surface normal, median filter (Equation (19)) is used. The199

median filter will not change surface normal over neighboring pixels at sharp features. Although200

median filter is preferable to keep the sharp features, we also use Gaussian filter (Equation (18)) to201

constrain the surface normal to be smooth. Median filter does not change the surface normal at shapr202

features, and such pixels may be stuck in local minima. Gaussian filter (Equation (18)) can modify the203

surface normal even for such edges. We empirically found beneficial to use both median filter and204

Gaussian filter since these filters can find a good balance between smooth normals and sharp features.205

As shown in Equation (6), there are nine unknown parameters and seven equations. Although206

Equation (18) or Equation (19) comprises three equations, the surface normal should be constrained207

as a unit vector; thus, Equation (18) or Equation (19) has two degrees-of-freedom. Now, we have208

nine unknown parameters and nine equations per pixel. The problem is now well-posed, but an209

over-smoothed surface normal will be obtained if we solely use this constraint. We add another210

constraint F3, as shown in Section 3.5, in order to relatively reduce the influence of F2.211

3.5. Smoothness constraint for albedo212

As discussed in Section 3.4, smoothing of the surface normal alone is insufficient as a constraint213

condition. Therefore, albedo smoothing is also conducted. The third term F3 in the cost function, which214

expresses the albedo smoothing, is shown in Equation (11). Equation (11) is discretized as Equation215

(21).216

A(x, y) = median{A(x + 1, y), A(x− 1, y), A(x, y + 1), A(x, y− 1)} . (21)

Namely, we applied median filter to the albedo. As shown in Equation (6), there are nine217

unknown parameters and seven equations. Equation (21) implies seven equations because there are218

seven channels. Now, we have 9 unknown parameters and 14 equations per pixel, which results219

in a well-posed problem. However, an over-smoothed albedo will be obtained if we solely use this220

constraint. We add another constraint F2 as shown in Section 3.4 in order to relatively reduce the221

influence of F3.222

3.6. Occluding boundary constraint and initial value of surface normal223

The target objects of this study are smooth and closed surfaces. Here, the occluding boundary is224

the border region where the surface normal of the object begins to turn toward the rear just before it225

becomes invisible. The angle between the observation direction vector and the normal vector is 90◦226

since we assume orthographic projection for camera model. It means that it is possible to correctly227

estimate the surface normal at the occluding boundary, which is orthogonal to the object area contour.228

This is incorporated into the cost function as F4. The occluding boundary normal is defined as nb229

(Equation (12)). Now, the solution that minimizes F4 is n(x, y) = nb(x, y). At the occluding boundary,230

nb is used as the estimation of the surface normal.231

Although F2 or F3 are enough for solving Equation (8), using also F4 is beneficial. The function F2232

itself has no boundary condition, and if we minimize F2 only, the surface normal will be extraordinary233

smooth. In order to restrict the surface normal to be smooth, we will add F4 as the boundary condition.234

In addition, the pixel brightness close to the occluding boundary is unreliable, since it contains235

shadow in most of the channels. Since the reliability of the data term F1 is small at occluding boundary,236

adding F4 is reasonable.237

To conduct the iteration process using the cost function, initial values are required for the surface238

normal and albedo. As follows, the initial value of surface normal is calculated from the surface normal239
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Figure 3. Approximate shape used for initial guess to surface normal. The shape is inflated using the
silhouette of the object region.

at occluding boundary (Figure 3). As is done in previous work [24], we also inflated the silhouette to240

make the approximate shape. Our approach is shown as follows.241

First, we calculate the distance from each pixel to the nearest occluding boundary pixel, and next,242

we sort the distance. As for initial guess, we assume that the probability distribution of the height of243

the target object is the same as that of the hemisphere. Let us denote the maximum of the distance as244

Dmax. The number of the pixels in object region is |P|. The order of the sorted pixel (x, y) is denoted245

as o. If we assume that the object is hemisphere whose radius is r, then r is calculated from |P| = πr2.246

The area o whose length from the center of the circle is denoted as l can be represented as o = πl2.247

Therefore, l can be calculated from o. The height h is represented as r2 = h2 + l2 where the distance248

from the center of the circle is l. Therefore, h can be calculated. Height of the unit hemisphere is249

calculated by dividing r from h. Multiplying Dmax results in the height of the hemisphere where its250

maximum height is Dmax. After that, the height field is slightly smoothed.251

The initial height (Figure 3) is obtained by above procedure. Differentiating the height and252

normalizing it as follows results in the surface normal n̂.253

nx = − ∂h
∂x

, ny = −∂h
∂y

, nz = 1 . (22)

n̂ =

(
nx, ny, nz

)√
n2

x + n2
y + n2

z

. (23)

Finally, the smoothed and normalized surface normal is used as the initial value.254

3.7. Initial value of albedo255

It is better to use an initial value of albedo which is close to the true albedo as much as possible,256

in order to speed up the convergence. However, since we do not use additional sensors or data, we257

have to calculate the initial albedo solely from input image. The input image is a single seven-channel258

image, whose light source direction is different. We calculate the average of seven channels, and such259

average image Iavg works well for initial albedo.260

Ĩavg(x, y) =
1
7
(I0(x, y) + I1(x, y) + · · ·+ I6(x, y)) , (24)

Iavg = bilateral( Ĩavg) . (25)

This is the sole image we can obtain from seven input images closest to the true albedo. If an261

infinite number of light sources illuminate the object uniformly from the surroundings, the observation262

of the object becomes the same as that of the albedo with constant scaling. This is the reason why263
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Input channels

Guide image Albedo

Figure 4. Average image calculated from seven channel images resembles the albedo.

the average image can be a good estimate of albedo. As shown in Fig. 4, the true albedo value and264

brightness of the average image Iavg are similar; therefore, the average image can be used as the initial265

guess. In order to decrease the effect of the shadow, bilateral filter is applied to the average image.266

The albedo A is highly correlated with the input image brightness I. The initial albedo Ac(x, y)267

is set to be an image where the brightness of the average image Iavg is scaled to be the same as the268

brightness of each channel.269

Ac(x, y) = Iavg(x, y)median
(x̃,ỹ)∈P

(
Ic(x̃, ỹ)

Iavg(x̃, ỹ)

)
. (26)

In order to robustly calculate the ratio Ic/Iavg, median of the ratio is used.270

3.8. Update rule271

After the initial values for the normal n and albedo A are calculated, as shown in Section 3.6 and272

Section 3.7, the calculations are iterated several times. First, the surface normal is calculated according273

to the procedure shown in Section 3.3. The calculated surface normal is denoted as n′, and the surface274

normal of the previous step is denoted as n′′. Instead of using n′, the new surface normal n for the275

next step is calculated as Equation (27).276

n = (1− αn)n′ + αnn′′ . (27)

The constant αn stabilizes the update of the surface normal, resulting in robust optimization.277

Actually, instead of Equation (27), we implemented our software as follows.278

 nx

ny

nz

 =



rlx0 rly0 rlz0
...

...
...

rlx,c−1 rly,c−1 rlz,c−1

drlx,c drly,c drlz,c

rlx,c+1 rly,c+1 rlz,c+1
...

...
...

rlx6 rly6 rlz6

α̃n 0 0
0 α̃n 0
0 0 α̃n



+

rI0(x, y)/(A0(x, y) + ε1)
...

rIc−1(x, y)/(Ac−1(x, y) + ε1)

drIc(x, y)/(Ac(x, y) + ε1)

rIc+1(x, y)/(Ac+1(x, y) + ε1)
...

rI6(x, y)/(A6(x, y) + ε1)

α̃nñx

α̃nñy

α̃nñz



. (28)

Here, the surface normal of previous iteration is represented as (ñx, ñy, ñz) and the updated279

surface normal to be taken over to the next iteration is represented as (nx, ny, nz). After solving this280

equation, the obtained surface normal is normalized.281
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Here, we have employed additional weight r. This weight depends on the number of valid282

channels for each pixel. If there are no shadows and speculars in all seven channels, we set r as large283

number, so that the surface normal calculated by photometric stereo equation becomes much important284

than the surface normal of the previous iteration (ñx, ñy, ñz). If there are many invalid channels, the285

surface normal calculated by photometric stereo equation becomes unreliable, thus we set r small so286

that surface normal will be unchanged. We define r as follows using the parameter w.287

r =
(

max(v− 2, 0)
7− 2

)w
. (29)

Here, v is the number of valid channels. We found empirically that w > 1 is good for stable288

computation.289

Next, albedo is calculated according to the procedure shown in Section 3.3. The calculated albedo290

is denoted as A′, and the albedo of the previous step is denoted as A′′. The update rule for albedo is291

shown in Equation (30).292

A = (1− αa)A′ + αaA′′ . (30)

The constant value αa stabilizes the optimization.293

Instead of using Equation (30), we implemented this process as follows.294

Ac =
(1− α̃a)Ic + α̃a Ãc

(1− α̃a)(l>c n) + α̃a
. (31)

This is a weighted sum of Equation (17) and the previously calculated albedo Ãc with the weight295

α̃a. Note that Equation (31) is calculated if channel c is marked as valid through the process shown in296

Section 3.9, and Ac = Ãc is used if it is invalid.297

3.9. Outlier detection298

Detecting specular reflection in color photometric stereo problems is difficult. One of the common299

approaches for detecting specular reflection is to use color. The colors of diffuse reflection and specular300

reflection are usually different; thus, the diffuse reflection and specular reflection can be separated301

when the scene is illuminated by a nearly white light source. However, the color photometric stereo302

illuminates the object with three different colors, and thus, the color-based approach cannot solve the303

problem. Another approach is to use principal component analysis or singular value decomposition,304

which represents the image with three orthonormal bases. However, the color of each light is different305

in color photometric stereo approach, and thus, the images cannot be represented by a linear sum306

of three bases. As a result, the remaining approach is to use the strong brightness change caused at307

specular reflection.308

Therefore, we have no choice but to use thresholding approach for outlier (specular / shadow)309

detection. Suppose that the maximum brightness of the object for all channels is Imax and the minimum310

is Imin. We use Tmax = Imax − tmax and Tmin = Imin + tmin as thresholds, where tmax and tmin are small311

positive constants. Outlier map N, which is 1 for outlier and 0 for valid pixel, is designed as follows.312

Ñc(x, y) =

{
1 if Ic(x, y) > Tmax or Ic(x, y) < Tmin ,
0 otherwise ,

(32)

Nc = dilation(Ñc) . (33)

Here, “dilation” is an operator which dilates the “1” pixels, which is a well-known operator in313

binary image processing, which we skip to explain.314
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3.10. Calculating height from surface normal315

In this section, we briefly introduce the procedure to calculate the height from surface normal.316

Here, we assume orthographic projection, and the perspective projection case is shown in the literature317

[28]. More details are given in the literature [16,17,28].318

The shape is represented as the height H set for each pixel. The partial derivatives of the heights319

with respect to x and y are called gradient, and represented as p and q, respectively.320

p = Hx =
∂H
∂x

, q = Hy =
∂H
∂y

. (34)

The surface normal n is represented by these gradients as shown below.

n =
(−p,−q, 1)>√

p2 + q2 + 1
. (35)

The cost function that relates the surface normal to the height is shown below.321 ∫ ∫
(Hx − p)2 +

(
Hy − q

)2 dxdy . (36)

The Euler equation (Euler-Lagrange differential equation) that minimizes the equation322 ∫ ∫
F(u, ux, uy)dxdy , (37)

can be expressed as323

Fu −
∂Fux

∂x
−

∂Fuy

∂y
= 0 . (38)

As for H, the Euler equation that minimizes Equation (36) is derived as follows:324

Hxx + Hyy − px − qy = 0 . (39)

Here, Hxx and Hyy can be discretized as follows:325

Hxx = H(x + 1, y) + H(x− 1, y)− 2H(x, y) (40)

Hyy = H(x, y + 1) + H(x, y− 1)− 2H(x, y) . (41)

Thus, substituting Equations (40) and (41) into Equation (39) yields the following equation.326

H(x, y) =
1
4
(H(x + 1, y) + H(x− 1, y) + H(x, y + 1) + H(x, y− 1))− 1

4
(px(x, y) + qy(x, y)) . (42)

As is shown in Equation (35), the gradients p and q are calculated from the surface normal n. The327

partial differentiation of gradients used for Equation (42) is discretized as follows.328

px(x, y) = p(x + 1, y)− p(x− 1, y) ,

qy(x, y) = q(x, y + 1)− q(x, y− 1) . (43)

After computing Equation (43), we solve Equation (42) to determine the height H. In this paper, we329

solve Equation (42) using the successive over-relaxation method, but any other methods are also330

applicable, such as Fourier transform [11] or preconditioned conjugate gradient [2].331
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Figure 5. Example of camera spectral sensitivity which has channel crosstalk.

Figure 6. Example of camera spectral sensitivity which does not have channel crosstalk.

3.11. Channel crosstalk332

In an instrument that independently uses signals of two or more channels, signal leaking from333

one channel to another is called crosstalk. Our experiment uses a multi-band camera that has seven334

channels and detects undesired colors of other channels. The undesired effect of a color camera is335

called channel crosstalk [3,8,10,19].336

Figure 5 is an example of a three-band RGB camera that detects 550 nm green light as (R, G, B) =337

(63, 255, 63). This signal should be (R, G, B) = (0, 255, 0) since the observed green light wavelength is338

550 nm. As shown in Fig. 5, the bandwidth of each spectral sensitivity is wide, and thus, has some339

overlaps; therefore, the R and B channels also detect the color of green light. Color photometric stereo340

assumes that the sensor has no channel crosstalk, as shown in Fig. 6; thus, we must remove channel341

crosstalk.342

To detect the channel crosstalk, we use a diffuse white reflectance standard, which has flat spectral343

reflectance for each wavelength. The seven-band camera captures seven images of the diffuse white344

reflectance standard illuminated by one of the seven light sources, which are lit one-by-one. A single345

channel is sensitive to each light; thus, the signals of other channels are caused by the crosstalk.346

Channel crosstalk can be represented by a color mixing matrix X. Since we use a seven-band347

camera, the size of matrix X is 7× 7. Let us denote the ideal signal without channel crosstalk as di.348

This seven-dimensional column vector di becomes do because it is affected by channel crosstalk. The349

relation between these signals and the color mixing matrix is as follows.350

do = Xdi . (44)

The original signal di can be recovered from the captured signal do as follows.351

di = X−1do . (45)
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The color mixing matrix X should be obtained prior to the measurement, and the input image352

should be converted by the inverse of the color mixing matrix X−1 before applying the proposed353

algorithm.354

Suppose that we look at the 0th channel of the diffuse white reflectance standard illuminated by the355

0th light with narrow-band wavelength. Ideally, the signal should be zero for each channel, except the356

0th channel. We define the value of the 0th channel as 1. Namely, the ideal signal di = (1, 0, 0, 0, 0, 0, 0)T
357

becomes do = (w0,0, w1,0, · · · , w6,0)
T after observation.358 (

w0,0 w1,0 w2,0 · · · w6,0

)>
= X

(
1 0 0 · · · 0

)>
. (46)

Similarly, the diffuse white reflectance standard illuminated by the 1st light is expressed as359

follows.360 (
w0,1 w1,1 w2,1 · · · w6,1

)>
= X

(
0 1 0 · · · 0

)>
. (47)

This procedure is repeated until the 6th light. The following equation expresses the whole361

measurement, which is conducted seven times.362 
w0,0 w0,1 . . . w0,6

w1,0 w1,1 . . . w1,6
...

...
. . .

...
w6,0 w6,1 . . . w6,6

 = X


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 . (48)

As a result, the color mixing matrix X is obtained as follows.363

X =


w0,0 w0,1 . . . w0,6

w1,0 w1,1 . . . w1,6
...

...
. . .

...
w6,0 w6,1 . . . w6,6

 . (49)

The inverse of the color mixing matrix X−1 can cancel the channel crosstalk of the observed signal.364

The output ideal signal di is calibrated such that the signal of the diffuse white reflectance standard365

would be (1, 1, · · · , 1).366

4. Experiment367

4.1. Experimental setup368

The camera used for this experiment is an FD-1665 3CCD multi-spectral camera by FluxData,369

Inc., USA, as shown in Fig. 7. It comprises two color sensors and a near-infrared (NIR) sensor. Each370

sensor is sensitive to its respective wavelength; i.e., each color sensor can record the components from371

three channels, and the NIR sensor can record the components from one channel. Figure 8 shows the372

spectral sensitivity of the camera. As shown in Fig. 8, channel crosstalk occurred among all camera373

channels. Therefore, the method shown in Section 3.11 is used to remove the channel crosstalk in the374

photographed input image. The diffuse white reflectance standard is used to obtain the color mixing375

matrix shown in Figure 9, where the row denotes the channel number and the column denotes the light376

number. The color mixing matrix is created using the average value of the diffuse white reflectance377

standard.378

Table 1 shows the full width at half maximum (FWHM) for each light source used in this379

experiment.380

The light source directions were determined prior to the experiment by photographing a mirrored381

ball. The locations of the light sources and the camera were then left unchanged.382
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Figure 7. Multispectral camera “FluxData FD-1665 (USA).”

Figure 8. Spectral sensitivity of multispectral camera and peak wavelength of each light sources.

Figure 9. The obtained color mixing matrix for canceling channel crosstalk. The average brightness of
white reflectance stardard becomes the color mixing matrix. The matrix will be diagonal matrix if there
are no channel crosstalk, however non-diagonal element is slightly bright due to the channel crosstalk.

Table 1. Peak wavelength and FWHM for each light source.

Light 0 1 2 3 4 5 6
Peak 750nm 632nm 610nm 550nm 520nm 470nm 430nm
FWHM 10nm 10nm 10nm 10nm 10nm 10nm 10nm
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Figure 10. Experimental setup with 7 light sources with different wavelengths and a single 7-band
multispectral camera.
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Figure 11. Gaussian sphere representation of surface normal where the north pole is the center of this
picture. The number indicates how many light sources are lit for each direction of surface normal.

The experiment was conducted in a darkroom. To increase the amount of supplementary383

information obtained for objects with narrow-wavelength regions, light sources of close wavelength384

were positioned opposite to each other. The NIR light source was placed next to the camera. Figure 10385

shows a diagram of the experiment.386

Each point on the object’s surface must always be illuminated by more than three light sources387

for the photometric stereo method. If there are six light sources, any point on the surface can be388

illuminated by at least three light sources [32]. Additionally, when specular reflection occurs, one389

picture that can be used for the photometric stereo method is eliminated. Therefore, the NIR light390

source is placed next to the camera so that each point is illuminated by at least four light sources.391

Figure 11 is Gaussian sphere representation of the surface normal, where the number of each region392

represents the number of light sources illuminated.393

In the photometric stereo method, precision increases when the angle between the light sources is394

widened, i.e., the baseline is lengthened, because it increases the shading contrast. However, when the395

baseline is lengthened, the shadow area increases. The locations of the light sources must, therefore, be396

limited to a certain solid angle. When seven points are placed within a fixed circle, the placement of397



Version July 1, 2019 submitted to J. Imaging 17 of 29

Figure 12. Schematic illustration of the geometrical location of seven light sources. Six lights are placed
at each apexes of regular hexagon. Multispectral camera is placed at the center of the hexagon. Infrared
light is placed near the camera.

the points must be as far from each other as possible to comprise the vertices of a regular hexagon and398

its center, as shown in Figure 12. Therefore, when placing seven light sources within a limited area for399

the photometric stereo method, it is optimal to place them at the vertices of a regular hexagon and its400

center.401

However, when three of the light sources selected from these seven lights are placed on the same
straight line, or more precisely, when the three light source vectors are coplanar, the surface normal
cannot be estimated by combining the three light sources. This is because combining these three light
sources causes the light source matrix to degenerate. Suppose that the surface normal n is illuminated
by light sources l0, l1, and l2, and is observed as the pixel brightnesses I0, I1, and I2, respectively, while
ignoring the shadow. If the light source directions are known, the surface normal can be obtained from
following equation if there is an inverse of 3× 3 light source matrix (l0, l1, l2)

>. l>0
l>1
l>2


 n

 =

 I0

I1

I2

 (50)

The determinant of (l0, l1, l2)
> is the scalar triple product l0 · (l1 × l2). If l0, l1, and l2 are coplanar,402

the vector l1 × l2 becomes orthogonal to the vector l0, thus the determinant becomes zero. Although403

two-light photometric stereo exists [27], it is better to avoid three lights to be coplanar if we have more404

than two lights. Therefore, the NIR light source is placed at a small distance from the center of the405

regular hexagon so that no three light sources are on the same straight line. The camera is placed at the406

center of the regular hexagon.407

4.2. Experimental result408

The computation time of the main part of the algorithm (i.e., excluding the computation time409

of calculating the initial value) is about ten seconds for ordinary object and ordinary computer with410

single thread and without any fine tuning to the source code.411

As for all experimental results shown in this section, we used α̃n = 0.1 and α̃a = 0.99. These two412

parameters are the most important parameters which affect the final result, and other parameters are413

relatively less influential in comparison to these parameters. We used 4 for the standard deviation414

of Gaussian filter for smoothing the surface normal, and 15× 15 and 11× 11 for the window size of415

median filter of surface normal and albedo, respectively. The iteration number was set to be 2. We used416
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Figure 13. Spherical object with two different colors is used for evaluation since we know the
mathematically true surface normal of the sphere.

w = 16, d = 0.0001, ε1 = 0.001, and ε2 = 0.1. The abovementioned parameters are the all parameters417

used in the main process.418

As for calculating the initial albedo, we used 2 for the standard deviation of spatial parameter,419

and 20 for the standard deviation of intensity parameter for the bilateral filter. When applying the420

bilateral filter, the pixel brightness of outlier is scaled by 0.1 when calculating the weighted sum. The421

iteration number of the bilateral filter is set to be 10. As for calculating the scale, in order to avoid422

division-by-zero error, Iavg ≤ 0.1 is not used for calculating Equation (26). As for calculating the initial423

normal, smoothing filter is applied twice: First it is applied to the height data and next it is applied424

to the surface normal. As for smoothing, 3× 3 box filter is used, and the iteration number was set to425

be 100, for both the height and the normal. As for outlier detection, tmax = 15 and tmin = 5 are used.426

The number of dilation is set to be 1. The abovementioned parameters are the all parameters used in427

calculating the initial values.428

First, we measured a plastic sphere to evaluate our system. The spherical object shown in Fig. 13429

consists of two types of albedos. Figure 14 shows the error map with pseudo-color representation. The430

error is evaluated as an angle between the estimated surface normal and the true surface normal. We431

measured a sphere because its true surface normal can be obtained from the mathematical expression432

of the sphere. We compared our method with the so-called “naive color photometric stereo.” In433

this paper, we define the color photometric stereo that assumes white objects as target as naive color434

photometric stereo. The generalized color photometric stereo problem shown in Equation (6) has nine435

unknown parameters; however, naive color photometric stereo has three unknown parameters: single436

albedo value (one parameter) and 3D surface normal (two parameters since it is constrained to be a437

unit vector). Therefore, naive color photometric stereo directly solves the linear equation even if the438

image is captured by a three-band color camera. Naive color photometric stereo robustly estimates the439

surface normal of white shirts, white dresses, and so on. The mean error of naive color photometric440

stereo (Fig. 14 (a)) were 0.343 [rad]. Our method overwhelms the previous approach, and our mean441

error (Fig. 14 (b)) was 0.148 [rad].442

We used an owl figurine (Fig. 16 (a)) as the measurement object. Fig. 15 shows the seven-channel443

image obtained from the experiment. The captured image shown in Fig. 15 (a) is contaminated by444

channel crosstalk, and thus, we cancelled it, which resulted in Fig. 15 (b). The surface normal estimated445

by naive color photometric stereo is shown in Fig. 16 (b) and that estimated by our method is shown in446

Fig. 16 (c). As usual, the x, y, and z axes of the surface normal are linearly converted to R, G, and B for447

the pseudo-color representation of the surface normal. The estimated albedo is shown in Fig. 17. The448

shapes obtained by naive color photometric stereo and by our method are shown in Fig. 18 (a) and 18449

(b), respectively.450

The same experiment was also conducted with another multicolored object. The results with the451

doll and Buddha figurines are shown in Figs. 19–21 and 22–24, respectively.452
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Figure 14. The error map of the sphere where the error is represented as angular difference between
estimated value and ground truth (red: large, blue: small): (a) Naive color photometric stereo and (b)
our method.

Figure 15. Obtained multi-band image [owl]: (a) Captured image and (b) image after cancelling channel
crosstalk. If you look carefully, you may know that the channel crosstalk is removed. However, the
difference is difficult to recognize since the crosstalk is small as is shown in Figure 9.

Figure 16. The result of owl object, which only causes diffuse reflection. Estimated surface normal
[owl]: (a) Target object, (b) surface normal of naive color photometric stereo, and (c) surface normal of
our method. The proposed method is not affected by the albedo difference.
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Figure 17. The result of owl object, which only causes diffuse reflection. Estimated albedo is shown,
which is smooth enough.

Figure 18. The result of owl object, which only causes diffuse reflection. Estimated geometry [owl]: (a)
Naive color photometric stereo and (b) our method. The proposed method is not affected by the albedo
difference.

Figure 19. The result of doll object, which causes strong specular reflection. Estimated surface normal
[doll]: (a) Target object, (b) surface normal of naive color photometric stereo, and (c) surface normal
of our method. The proposed method is not affected by the albedo difference appears at the flower
basket.
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Figure 20. The result of doll object, which causes strong specular reflection. Estimated albedo is shown,
which is smooth enough.

Figure 21. The result of doll object, which causes strong specular reflection. Estimated geometry [doll]:
(a) Naive color photometric stereo and (b) our method. The proposed method is not affected by the
albedo difference appears at the flower basket.

Figure 22. The result of buddha object, which causes strong specular reflection. Estimated surface
normal [Buddha]: (a) Target object, (b) surface normal of naive color photometric stereo, and (c) surface
normal of our method. The proposed method can smooth the surface normal of the scarf whose surface
normal is unreliable due to black paint.
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Figure 23. The result of buddha object, which only causes strong specular reflection. Estimated albedo
is shown, which is smooth enough.

Figure 24. The result of buddha object, which causes strong specular reflection. Estimated geometry
[Buddha]: (a) Naive color photometric stereo and (b) our method. The proposed method can smooth
the surface normal of the scarf whose surface normal is unreliable due to black paint.
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Figure 25. The result of hand with glove. Estimated surface normal [pose 1]: (a) One of the seven
channel images, (b) estimated surface normal [naive color photometric stereo], and (c) estimated
surface normal [our method]. Both color photometric stereos can estimate the surface normal of the
dynamically deforming object.

Figure 26. The result of hand with glove. Estimated albedo [pose 1] is shown, which is smooth enough.

The advantage of color photometric stereo is that the surface normal of dynamic objects can be453

obtained. Most existing color photometric stereo methods measure white shirts, white dresses, etc., to454

verify that these methods can be applied to dynamically deforming objects. Due to the small size of455

the darkroom, we measured a glove instead of clothes. Figures 25–27 show the measurement results,456

and Figs. 28–30 show the results of the same object but differently deformed.457

4.3. Discussion458

Figure 31 (a) shows the result of Microsoft Kinect sensor. For comparison, our result is shown in459

Figure 31 (b). Kinect measures the depth and photometric stereo measures the surface normal. These460

two sensors are fundamentally different, however, since Kinect is a well-known commercial product of461

shape measurement, we think beneficial to show Figure 31 for the readers.462

Figure 32 shows how the surface normal is affected by the parameters (Equation (28) and Equation463

(31)). Figures 32 (a) and (b) are the results when α̃a = 0.1, while Figures 32 (c) and (d) are the results464

when α̃a = 0.99. Figures 32 (a) and (c) are the results when α̃n = 0.1, while Figures 32 (b) and (d) are the465

results when α̃n = 0.99. Figure 32 (b) is smoother than Figure 32 (a), and Figure 32 (d) is smoother than466

Figure 27. The result of hand with glove. Estimated geometry [pose 1]: (a) Estimated geometry [naive
color photometric stereo] and (b) estimated geometry [our method]. Both color photometric stereos can
estimate the surface normal of the dynamically deforming object.
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Figure 28. The result of hand with glove. Estimated surface normal [pose 2]: (a) One of the seven
channel images, (b) estimated surface normal [naive color photometric stereo], and (c) estimated
surface normal [our method]. Both color photometric stereos can estimate the surface normal of the
dynamically deforming object.

Figure 29. The result of hand with glove. Estimated albedo [pose 2] is shown, which is smooth enough.

Figure 30. The result of hand with glove. Estimated geometry [pose 2]: (a) Estimated geometry [naive
color photometric stereo] and (b) estimated geometry [our method]. Both color photometric stereos can
estimate the surface normal of the dynamically deforming object.
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Figure 31. Comparison with off-the-shelf depth sensor: (a) Result of off-the-shelf depth sensor and (b)
result of our method. The depth sensor can estimate the 3D coordinate of vertices successfully and the
photometric stereo can estimate the surface normal successfully.

Figure 32 (c), since the smoothness constraint of surface normal is stronger. Figure 32 (a) is smoother467

than Figure 32 (c), and Figure 32 (b) is smoother than Figure 32 (d), since the albedo is not smooth,468

which means that the surface normal becomes relatively smooth. Although Figures 17, 20, 23, 26, and469

29 show over-smoothed result of albedo, it is an adequate way to smooth the albedo in order to obtain470

sharp features of surface normal.471

Figure 33(a) shows the initial value of the surface normal, and Figure 33 (b)–(c) shows how the472

surface normal is updated. This figure proves that our algorithm is stable since it converges quickly.473

As shown in Figure 14, our method is robust to multiple types of albedos. On the other hand, as474

shown in Figures 16–30, our method over-smoothens the detailed surface structure. The generalized475

color photometric stereo problem shown in Equation (6) has nine unknown parameters; however,476

naive color photometric stereo has three unknown parameters, as stated in Section 4.2. Naive color477

photometric stereo robustly estimates the surface normal of white shirts, white dresses, etc. For multiple478

albedos, we have to tackle the ill-posed problem shown in Equation (6). Before starting this project, we479

had planned to use other constraints such as a so-called “integrability constraint.” However, we have480

chosen the smoothness constraint for constraining the problem since the integrability constraint solely481

cannot solve the problem. Surface normal n can be expressed as the gradients p and q (Equation (35)).482

Equation (6) can be rewritten as follows.483

I0(x, y) = f (A0(x, y), p(x, y), q(x, y)) ,
...

I6(x, y) = f (A6(x, y), p(x, y), q(x, y)) . (51)
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Figure 32. How the weight of smoothness term affects the results: (a) Sharp normal and sharp albedo,
(b) smooth normal and sharp albedo, (c) sharp normal and smooth albedo, and (d) smooth normal and
smooth albedo.

Figure 33. Intermediate state of surface normal through the proposed method: (a) Initial value of the
surface normal, (b) the surface normal after 1 iteration, and (c) surface normal after 2 iterations. The
proposed method is stable and coverges fast.
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Namely, we have 9 unknowns (A0, . . . , A6, p, and q) and 7 equations per pixel. Smoothness constraint484

for p and q can be represented as follows.485

p(x, y) =
1
4
(p(x, y− 1) + p(x− 1, y) + p(x + 1, y) + p(x, y + 1)) ,

q(x, y) =
1
4
(q(x, y− 1) + q(x− 1, y) + q(x + 1, y) + q(x, y + 1)) . (52)

Since there are additional two constraints per pixel which results in 9 equations per pixel, we can solve
the problem. Integrability constraint can be represented as follows.

p(x, y + 1)− p(x, y) = q(x + 1, y)− q(x, y) . (53)

Since only one constraint is added per pixel, we cannot determine 9 parameters from 8 equations. This486

is the reason why we use smoothness constraint rather than integrability constraint.487

The over-smoothing problem is an unavoidable effect in the current approach, which relies on488

Equation (6). Our future work is to drastically change our approach such that it does not depend on489

Equation (6). We have to fundamentally consider the basic theory in order to improve the performance490

of color photometric stereo.491

5. Conclusion492

In this study, surface normal estimation of multicolored objects was conducted by the493

multi-spectral color photometric stereo method using median filter and occluding boundary. Note that494

the conventional color photometric stereo method is an ill-posed problem. Constraining the surface495

normal and albedo using median filter sucessfully solved this problem. In addition, we used the496

approximate shape calculated from the occluding boundary as the initial guess to the surface normal.497

Finally, we assembled measurement hardware that illuminates the object with seven different spectra498

and captured the image by a seven-band multispectral camera.499

As discussed in Section 4.3, our method faces several problems in terms of both hardware and500

software. These problems cannot be solved with a minor update, so we need a drastic change for501

further improvement. In the future, we will disassemble the current measurement hardware and create502

a more useful system. For example, in order to make the hardware robust to shadow, it is better to add503

more lights and observe the scene with multispectral camera with more than 7 channels. The current504

method used one point light per channel, however, using area light is one choice for improvement505

in order to avoid the shadows. Polarization filter is also useful to remove the specular reflection.506

Additional future work is to reconsider the basic theory and fundamentally reorganize the approach507

of the algorithm. In order to apply the method to non-Lambertian BRDF, it is useful to measure the508

database of actual object with proposed system and train them using deep learning or other machine509

learnings. Database of spectral reflectance of various object decreases the number of unknowns which510

can make the problem well-posed. Using addtional sensors such as RGB-D camera is also interesting.511
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