
Image enhancement for dichromats using image pyramid based on saturation

Daisuke Miyazaki Hodaka Tanida
Hiroshima City University, Hiroshima 731-3194, Japan
Corresponding author: miyazaki@hiroshima-cu.ac.jp

Abstract

Dichromats recognize colors using two out of three cone
cells; L, M, and S. For example, red-green color blinds can-
not distinguish the color between red, yellow, and green. To
extend the ability of dichromats to recognize the color dif-
ference, we propose a method to expand the color difference
when observed by dichromats. We analyze the color be-
tween the neighboring pixels in chromaticity space. In ad-
dition, we employ multiresolution analysis to form the Pois-
son equation. Our multiresolution analysis is non-linear
depending on the saturation of each pixel’s color. Solving
the multiresolution Poisson equation results in the color en-
hanced image.

1. Introduction

Enhancing the visibility of color image for dichromats is
an important research field [1–11]. Most methods first map
all pixel colors in color space such as RGB, HSV, XYZ,
LMS, L*a*b*, etc., and next, they deform the color space or
deform the clusters of mapped points so that it satisfies the
required condition. On the other hand, our method analyzes
the color difference between neighboring pixels. Namely,
our method analyzes not in color space but in image space
(i.e., pixel coordinates). We formulate the Poisson equa-
tion so that the relative color difference between neighbor-
ing pixels will be preserved.

Some methods [13–15] also solve the Poisson equation
to enhance the visibility of dichromats. These methods
[13, 15] form the Poisson equation in RGB intensity space,
while our method forms in xy-chromaticity space. As a re-
sult, our method exaggerates the color difference between
neighboring pixels. Existing methods [14] also forms the
Poisson equation in xy-choromaticity space. The method
based on Poisson equation is sensitive to the close neighbor-
ing pixels. On the other hand, our method can consider far
pixels due to the non-linear multiresolution analysis. The
contribution of this paper is illustrated in Fig. 1.

Figure 1. Schematic explanation of color-
based approach and pixel-based approach.

Figure 2. Definition of hue of (a) trichromats,
(b) protanopia, and (c) deuteranopia.

2. Color enhancement for dichromat

In xy-diagram calcualted from CIE-XYZ value, the
white color is placed in (x, y) = (0.33, 0.33) for trichro-
mats. First, the hue α of trichromats is defined as an an-
gle defined in xy-plane (Fig. 2 (a)). The trichromatic hue
α is defined as an angle around the white point (x, y) =
(0.33, 0.33).

The white point (the center of color confusion) of
protanopia is (x, y) = (0.747, 0.253) and that of deutera-



nopia is (x, y) = (1.000, 0.000) [16]. The hue β is defined
as the angle around these white points [6].

The vector a from the white point (1/3, 1/3) of xy chro-
maticity to the chromaticity of image pixel is represented as
Eq. (1).

a(u, v) =

 x̃(u, v)− 0.33
ỹ(u, v)− 0.33

0

 . (1)

Here, we use (u, v) for representing the x and y components
of pixel position represented in Euclidean coordinates with
x and y axes.

We deonte the 4-neighbor pixel position as (u+∆v, u+
∆v), where the integer values ∆u and ∆v obey |∆u| +
|∆v| = 1. The color vectors of neighboring pixels are also
calculated as Eq. (2).

ã(u+∆u, v+∆v) =

 x̃(u+∆u, v +∆v)− 0.33
ỹ(u+∆u, v +∆v)− 0.33

0

 .

(2)
We normalize these vectors and denote them as â(u, v)

and â(u + ∆u, v + ∆v). We denote the cross product of
these two vectors as a.

a(u+∆u, v+∆v) = â(u+∆u, v+∆v)× â(u, v) . (3)

Calculating the arcsine of a results in the signed angle be-
tween â(u+∆u, v+∆v) and â(u, v). We denote this angle
as ∆α(u+∆u, v +∆v).

∆α(u+∆u, v+∆v) = sin−1(a(u+∆u, v+∆v)) . (4)

The difference of hue angle β̃ between neighboring pix-
els should be proportional to the difference of hue angle α
between neighboring pixels. Namely, the Laplacian of β̃
should be the same as the Laplacian of α, scaled with a cer-
tain constant value.

△β̃(u, v) = △α(u, v) . (5)

The discretized representation of Eq. (5) is represented as
follows.

β̃(u, v)− 1

4
β̃(u− 1, v)− 1

4
β̃(u+ 1, v)

−1

4
β̃(u, v − 1)− 1

4
β̃(u, v + 1) =

1

4
∆α̃(u− 1, v) +

1

4
∆α̃(u+ 1, v)

+
1

4
∆α̃(u, v − 1) +

1

4
∆α̃(u, v + 1) . (6)

The saturation a in this paper is defined as the length
of the vector from the white point (1/3, 1/3) to the pixel’s
chromaticity.

a(u, v) =
√
(x̃(u, v)− 0.33)2 + (ỹ(u, v)− 0.33)2 . (7)

Figure 3. Choosing the pixel of maximum sat-
uration.

Figure 4. Hue/saturation pyramid.

The image size 512 × 512 is downsized to 256 × 256
by choosing the maximum saturation of each 2 × 2 block
(Fig. 3). For the lower resolution image, in addition to the
saturation, we also preserve the hue vector. We repeat this
process until the image size becomes 1×1 (Fig. 4). Eq. (10)
shows the equation to make 256×256 image from 512×512
image.

a256(u, v) = a512(ũ, ṽ) , (8)
a256(u, v) = a512(ũ, ṽ) . (9)
(ũ, ṽ) = argmax

(ũ,ṽ)

α512(ũ, ṽ) ,

(ũ, ṽ) ∈ {(2u, 2v), (2u+ 1, 2v),

(2u, 2v + 1), (2u+ 1, 2v + 1)} . (10)

Here, a represents the saturation (Eq. (7)), a represents the
hue vector (Eq. (1)), and (ũ, ṽ) represents the selected pixel
position. Note that the “argmax” in Eq. (10) sieves the
chromatic pixel. For example, if we uset the “average” in-
stead of “argmax,” the final result of downsampling and
upsampling coincides with the input image that results in a
meaningless process.

We denote the hue angle of the enhanced image as β.
First of all, we set β(u, v) = 0 for 1 × 1 image. Next, we
copy the hue of 1× 1 pixel to 2× 2 pixels (Eq. (11)).

β̃2(2u, 2v) = β̃2(2u+ 1, 2v) = β̃2(2u, 2v + 1)

= β̃2(2u+ 1, 2v + 1) = β1(u, v) . (11)

The color difference ∆α̃(u + ∆u, v + ∆v) between



Figure 5. Specific example: (a) The color dif-
ference between 2 pixels, (b) the chromatic
pixels separated by achromatic pixels, and
(c) the chromatic pixels chosen from 4 pixels.

neighboring pixels is calculated as Eq. (4). The discretized
Poisson equation is shown in Eq. (6). After copying β, we
add the color difference between neighboring pixels, which
forms Poisson equation as follows.

βi(u, v) =
1

4
β̃i(u− 1, v) +

1

4
∆α̃(u− 1, v)

+
1

4
β̃i(u, v − 1) +

1

4
∆α̃(u, v − 1)

+
1

4
β̃i(u, v + 1) +

1

4
∆α̃(u, v + 1)

+
1

4
β̃i(u+ 1, v) +

1

4
∆α̃(u+ 1, v) . (12)

We repeat these processes until the image size becomes
512× 512 (Fig. 4).

Here, we explain the contribution of our method. Ex-
isting methods exaggerates the color difference between
neighboring pixels (Fig. 5 (a)). However, the achromatic
pixel between the chromatic pixels interfere the color exag-
geration (Fig. 5 (b)). Therefore, we choose chromatic pix-
els to calculate the low resolution image (Fig. 5 (c)). As a
result, we can increase the color difference of neighboring
pixels since the neighboring pixel of low resolution image
is chromatic, not achromatic.

3. Experiment

We first deformed the input image to 512× 512 and ap-
plied our method, and finally deformed the result to its orig-
inal size.

Fig. 6 (a) shows the input image of two chromatic area
separated with less chromatic area. Similar to the appear-
ance of the dichromats (Fig. 6 (b)), the result of existing
method [14] (Fig. 6 (c)) are also yellowish for both patches,
which shows the color difference of these patches are in-
sufficiently enhanced. Our result (Fig. 6 (d)) changes these

Figure 6. Result [Patch]: (a) Input image, (b)
appearance of dichromats, (c) result of ex-
isting method, and (d) result of proposed
method.

Table 1. Color difference of xy-chromaticity:
(a) Input image, (b) appearance of dichro-
mats, (c) result of existing method, and (d)
result of proposed method.

(a) (b) (c) (d)
0.144 0.021 0.077 0.177

0.000 0.072 0.129

patches to blue and yellow, which proves the high perfor-
mance of enhancing the color difference even if there is
an achromatic area in the image. Table 1 shows that the
color difference of our method is larger than that of existing
method.

Input image is shown in Fig. 7 (a), the dichromats’ ap-
pearance is shown in Fig. 7 (b), the result is shown in Fig. 7
(d), and the comparison to previous method [14] is shown
in Fig. 7 (c).

Our results have higher color difference than existing
method’s results. Our method has high performance to
exaggerate the color difference locally, and the result has
sharp features, or badly speaking, has noisy artifacts. Our
method has high performance to exaggerate the color dif-
ference globally, however, the whole image becomes unnat-
ural.

4. Conclusion

In this paper, we have proposed a method that enhances
the visibility of dichromats. Our method converts the color
of an image so that the image will be clear for dichromats.
We have formulated the color difference of trichromat as a
Poisson equation and solved it to preserve the color differ-



Figure 7. Result [Leaves]: (a) Input image, (b) appearance of dichromats, (c) result of existing method,
and (d) result of proposed method.

ence which can also be perceived by dichromats. The Pois-
son equation formulated in chromaticity space exaggerates
the color difference of neighboring pixels, and at the same
time, it preserves the chromaticity difference of trichromats.
Our multiresolution approach can exaggerate the color dif-
ference between chromatic pixels even if there is an achro-
matic pixel between chromatic pixel.
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